https://www.selleckchem.com/products/sw033291.html Research regarding cellular responses at different oxygen concentrations (OCs) is of immense interest within the field of radiobiology. Therefore, this study aimed to develop a mechanistic model to analyze cellular responses at different OCs. A DNA damage model (the different cell oxygen level DNA damage [DICOLDD] model) that examines the oxygen effect was developed based on the oxygen fixation hypothesis, which states that dissolved oxygen can modify the reaction kinetics of DNA-derived radicals generated by ionizing radiation. The generation of DNA-derived radicals was simulated using the Monte Carlo method. The decay of DNA-derived radicals due to the competing processes of chemical repair, oxygen fixation, and intrinsic damaging was described using differential equations. The DICOLDD model was fitted to the previous experimental data obtained under different irradiation configurations and validated by calculating the yields of DNA double-strand breaks (DSBs) after exposure to Cs as well as cell surto different types of radiation. We developed a DNA damage model to evaluate the oxygen effect and provide evidence that a reaction-kinetic model of DNA-derived radicals induced by ionizing radiation suffices to explain the observed oxygen effects. Therefore, the DICOLDD model is a powerful tool for the analysis of cellular responses at different OCs after exposure to different types of radiation. Stereotactic radiosurgery (SRS) has become an important modality in the treatment of brain metastases. The purpose of this study is to investigate the potential of radiomic features from planning magnetic resonance (MR) images and dose maps to predict local failure after SRS for brain metastases. Twenty-eight patients who received Gamma Knife (GK) radiosurgery for brain metastases were retrospectively reviewed in this IRB-approved study. 179 irradiated tumors included 42 that locally failed within one-year follow-up. Using SR