N6-methyladenosine (m6A) is the most common post-transcriptional modification of RNA in eukaryotes that regulates the post-transcriptional expression level of genes without changing the base sequence. The role of m6A in fungal keratitis has not yet been elucidated. Here, we aimed to identify m6A modification changes and their potential roles in fungal keratitis. The murine model of fungal keratitis was established by inoculating mice with Fusarium solani (F. solani). The overall m6A level was detected via an m6A RNA methylation assay kit. The expression levels of key m6A modification-related genes were estimated by quantitative real-time polymerase chain reaction (PCR). The expression and localization of METTL (methyltransferase like)3, the key component of the m6A methyltransferase complex, was determined by immunostaining and Western blotting (WB). Immunoprecipitation methylation microarray was used to describe the changes in m6A modification in F. solani-infected corneal tissue. The overall m6A level in corneal tissue on the 5th day in the F. solani-treated group was upregulated compared with that in the control group. The demethylase levels were unaltered, but the level of the methylase METTL3 was increased significantly after fungal infection. Additionally, differences were found in m6A modifications in 1137 mRNAs, of which 780 were hypermethylated and 357 were hypomethylated. To the best of our knowledge, the present work is the first investigation on the m6A modification profiles in experimental fungal keratitis, and it may provide a potential therapeutic target.The main purpose of this study is to evaluate the diagnostic role of Toll-like receptors 2 (TLR2) and 4 (TLR4) expression in corneal and conjunctival epithelial cells of eyes with pellucid marginal degeneration (PMD) compared to keratoconus patients (KC) and control subjects. A prospective case-control study in 29 PMD eyes, 109 KC eyes and 72 healthy eyes was done. All participants were subjected to a clinical, topographic, aberrometric and tomographic exam with extraction of corneal and conjunctival epithelial cells through scraping. The TLR2 and TLR4 expression was measured with flow cytometry. Receiver operating characteristic (ROC) curve analysis was used to determine the most appropriate cutoff point for predicting the risk of PMD and KC. Correlations between TLR2/TLR4 expression and the severity of PMD/KC were evaluated. A TLRs follow-up review was made 19 ± 4 months after to the first review. As result, mean expression of TLR2 and TLR4 in both corneal and conjunctival epithelial cells was significantly higher in eyes with corneal ectasia (PMD and KC) than in control eyes (all p less then 0.05). Conjunctival TLR4 expression showed the highest capacity to diagnose the existence of PMD (odd ratio 42.84; 95% confidence interval6.20-296.20; p less then 0.0001) after adjusting by eye rubbing and steeper corneal meridian. Moreover, we found an association between the TLR2/TLR4 overexpression with the severity of the PMD and KC measured by corneal topographic, aberrometric and tomographic quantitative parameters (all p less then 0.05). Differences on TLR2/TLR4 expression between study groups were maintained during the follow-up period. https://www.selleckchem.com/products/azd-9574.html In conclusion, the TLR2/TLR4 overexpression in corneal and conjunctival epithelial cells of PMD and KC patients compared to healthy control subjects have demonstrated their role as diagnostic target in both corneal ectatic disorders.Salmonids have four subtypes of insulin-like growth factor binding protein (IGFBP)-1, termed -1a1, -1a2, -1b1 and 1b2, owing to teleost- and a lineage-specific whole-genome duplications. We have previously produced recombinant proteins of masu salmon IGFBP-1a1 and -1b2 and conducted functional analysis. To further characterize salmonid-specific IGFBP-1s, we cloned cDNAs encoding mature proteins of IGFBP-1a2 and -1b1 from the liver of masu salmon (Oncorhynchus masou). IGFBP-1a2 and -1b1 shared a 56% amino acid sequence homology whereas their homologies with their counterparts (i.e. -1a1 and -1b2) were 77% and 82%, respectively. We next expressed recombinant masu salmon (rs) IGFBP-1a2 and -1b1 with fusion partners thioredoxin (Trx) and a His-tag using the pET-32a(+) vector system in Escherichia coli. Trx.His.rsIGFBP-1s were detected in the insoluble faction, solubilized in a buffer containing urea, and isolated by Ni-affinity chromatography. They were refolded by dialysis and cleaved from the fusion partners by enterokinase. rsIGFBP-1a2 and -1b1 were purified by reversed-phase high performance liquid chromatography. Purified rsIGFBP-1a2 and -1b1 had the ability to bind digoxigenin-labeled human IGF-I on ligand blotting. We then examined the effects of rsIGFBP-1a1, -1a2, -1b1 and -1b2 in combination with human IGF-I on growth hormone (GH) release from cultured pituitary cells of masu salmon. IGF-I alone reduced GH release while the addition of rsIGFBP-1a1, -1b1 or -1b2, but not rsIGFBP-1a2, diminished the suppressive effect of IGF-I. Addition of rsIGFBP-1s without IGF-I had no effect on GH release. These results show that rsIGFBP-1b1, along with rsIGFBP-1a1 and -1b2, inhibits IGF-I action on the pituitary in masu salmon. The lack of the effect by rsIGFBP-1a2 suggests that salmon IGFBP-1 subtypes underwent subfunction partitioning and have different degrees of IGF-inhibitory action.Sea lampreys (Petromyzon marinus) are basal vertebrates that exhibit reproductive control via a hypothalamic-pituitary-gonadal axis. The function and evolution of the hypothalamic and pituitary peptide hormones are well studied in this species, whereas the functions of classical sex steroid hormones have not been well established due to their low or non-detectable plasma levels. Sea lamprey pheromone 3-keto petromyzonol sulfate (3kPZS) has been shown to increase while 3-keto allocholic acid (3kACA) decreases plasma 15α-hydroxyprogesterone (15αP) levels in prespermiating males (PSM) but not in preovulatory females (POF). However, spermiating male washings that contain both 3kPZS and 3kACA facilitate spawning in both sexes. Therefore, we wondered if the effects of pheromones on POF were elicited by classical steroid hormones such as progesterone, androstenedione, testosterone and estradiol. We hypothesized that waterborne 3kACA and 3kPZS differentially alter steroid hormone levels in prespawning sea lampreys. We determined the sex differences and pheromonal effects on steroid hormone levels in prespawning sea lampreys using sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methods.