Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell death and compromised organ function. This is first observed in the thymus, the primary lymphoid organ that generates and selects T cells. However, the molecular and cellular mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse ageing leads to less efficient T cell selection, decreased self-antigen representation and increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the function of individual mature thymic epithelial cells is compromised only modestly. Specifically, an early-life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs the core immunological functions of the thymus.A rapidly growing body of literature in several organisms suggests that environmentally-induced adaptive changes in phenotype can be transmitted across multiple generations. Although within-generation plasticity has been well documented, multigenerational plasticity represents a significant departure from conventional evolutionary thought. Studies of C. elegans have been particularly influential because this species exhibits extensive phenotypic plasticity, it is often essentially isogenic, and it has well-documented molecular and cellular mechanisms through which nongenetic inheritance occurs. However, while experimentalists are eager to claim that nongenetic modes of inheritance characterized in this and other model systems enhance fitness, many biologists remain skeptical given the extraordinary nature of this claim. We establish three criteria to evaluate how compelling the evidence for adaptive multigenerational plasticity is, and we use these criteria to critically examine putative cases of it in C. elegans. We conclude by suggesting potentially fruitful avenues for future research. Patients with low estimated glomerular filtration rates may be at higher risk of post-contrast acute kidney injury following contrast-enhanced computed tomography imaging. Point-of-care devices allow rapid measurement of estimated glomerular filtration rates for patients referred without a recent estimated glomerular filtration rate result. To assess the clinical effectiveness and cost-effectiveness of point-of-care creatinine tests for outpatients without a recent estimated glomerular filtration rate measurement who need contrast-enhanced computed tomography imaging. Three systematic reviews of test accuracy, implementation and clinical outcomes, and economic analyses were carried out. Bibliographic databases were searched from inception to November 2018. Studies comparing the accuracy of point-of-care creatinine tests with laboratory reference tests to assess kidney function in adults in a non-emergency setting and studies reporting implementation and clinical outcomes were included. Risk of bias of do minimise delays within the current computed tomography pathway. Studies evaluating the impact of risk-stratifying questionnaires on workflow outcomes in computed tomography patients without recent estimated glomerular filtration rate results are needed. This study is registered as PROSPERO CRD42018115818. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in ; Vol. 24, No. 39. See the NIHR Journals Library website for further project information. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 39. See the NIHR Journals Library website for further project information.Introduction.Enterococcus faecalis is a facultative, anaerobic, opportunistic pathogen associated with medical and dental diseases. Bacterial phenotypic traits and pathogenesis are often influenced by lysogeny.Aim. The aim of this study was to characterize both the morphology and complete genome sequences of induced prophages purified from E. faecalis clinical isolates.Methodology.E. faecalis isolates were recovered from the roots of teeth of patients attending an endodontic clinic. The morphological features of isolated phage were characterized using transmission electron microscopy (TEM). DNA sequencing was performed using the Illumina MiSeq platform.Results. https://www.selleckchem.com/products/piperaquine-phosphate.html TEM indicated that the isolated φEf-vB1 prophage belongs to the family Siphoviridae. The φEf-vB1 prophage was stable over a wide range of temperatures and pH. Sequencing of φEf-vB1 DNA revealed that the phage genome is 37 561 bp in length with a G+C content of 37.6mol% and contained 53 ORFs. Comparison with previously predicted prophage genomes using blast revealed that φEf-vB1 has a high sequence similarity to previously characterized phage genomes. The lysogenic E. faecalis strain exhibited a higher biofilm formation capacity relative to the non-lysogenic strain.Conclusion. The current findings highlight the role of lysogeny in modification of E. faecalis properties and reveal the potential importance of prophages in E. faecalis biology and pathogenesis.Jumbo phages are bacteriophages that carry more than 200 kbp of DNA. In this study we characterized two jumbo phages (ΦRSL2 and ΦXacN1) and one semi-jumbo phage (ΦRP13) at the structural level by cryo-electron microscopy. Focusing on their capsids, three-dimensional structures of the heads at resolutions ranging from 16 to 9 Å were calculated. Based on these structures we determined the geometrical basis on which the icosahedral capsids of these phages are constructed, which includes the accessory and decorative proteins that complement them. A triangulation number novel to Myoviridae (ΦRP13; T=21) was discovered as well as two others, which are more common for jumbo phages (T=27 and T=28). Based on one of the structures we also provide evidence that accessory or decorative proteins are not a prerequisite for maintaining the structural integrity of very large capsids.