https://www.selleckchem.com/products/mrt67307.html Despite their high potency, the widespread implementation of natural antimicrobial peptides is still challenging due to their low scalability and high hemolytic activities. Herein, we address these issues by employing a modular approach to mimic the key amino acid residues present in antimicrobial peptides, such as lysine, leucine, and serine, but on the highly biocompatible poly(ethylene glycol) (PEG) backbone. A series of these PEG-based peptides (PEGtides) were developed using functional epoxide monomers, corresponding to each key amino acid, with several possessing highly potent bactericidal activities and controlled selectivities, with respect to their hemolytic behavior. The critical role of the composition and the structure of the PEGtides in their selectivities was further supported by coarse-grained molecular dynamic simulations. This modular approach is anticipated to provide the design principles necessary for the future development of antimicrobial polymers.Chemokines are secreted proteins that regulate leukocyte migration during inflammatory responses by signaling through chemokine receptors. Full length CC chemokine ligand 14, CCL14(1-74), is a weak agonist for the chemokine receptor CCR1, but its activity is substantially enhanced upon proteolytic cleavage to CCL14(9-74). CCL14 is O-glycosylated at Ser7, adjacent to the site of proteolytic activation. To determine whether glycosylation regulates the activity of CCL14, we used native chemical ligation to prepare four homogeneously glycosylated variants of CCL14(1-74). Each protein was assembled from three synthetic peptide fragments in "one-pot" using two sequential ligation reactions. We show that while glycosylation of CCL14(1-74) did not affect CCR1 binding affinity or potency of activation, sialylated variants of CCL14(1-74) exhibited reduced activity after treatment with plasmin compared to nonsialylated forms. These data indicate that glycosylati