Achieving efficient devices while maintaining a high fabrication yield is a key challenge in the fabrication of solution-processed, perovskite-based light-emitting diodes (PeLEDs). In this respect, pinholes in the solution-processed perovskite layers are a major obstacle. These are usually mitigated using organic electron-conducting planarization layers. However, these organic interlayers are unstable under applied bias in air and suffer from limited charge carrier mobility. In this work, we present a high brightness p-i-n PeLED based on a novel blade-coated silver microflake (SMF) rear electrode, which allows for a low-cost nanocrystalline ZnO inorganic electron-transporting layer to be used. This novel SMF contact is crucial for achieving high performance as it prevents the electrical shorting suffered when standard thermally evaporated silver rear contacts are used. The fabricated PeLEDs exhibit an excellent maximum luminance of 98,000 cd/m2, a maximum current efficiency of 22.3 cd/A, and a high external quantum efficiency of 4.6% under 5.9 V forward bias. The SMF rear contact can be printed and scaled at low cost to large areas and applied to flexible devices.The objective of this research was to investigate the effects of Lactobacillus acidophilus CICC 6074 S-layer protein on the viability, adhesion, cell cycle, and apoptosis of human colon cancer HT-29 cells and to explore their molecular mechanism of tumor suppression. The S-layer protein at doses of 0, 25, 50, and 100 mg/L significantly suppressed the proliferation of HT-29 cells. The S-layer protein exerts its cytotoxic activities against colon cancer HT-29 cells by arresting the cell cycle in the G1 phase through upregulating the expression of p53, p21, and p16 and downregulating the expression of CDK1 (cyclin-dependent kinases) and cyclin B. Morphological changes were further observed by transmission electron microscopy, and the cells treated with the S-layer protein showed obvious characteristic changes of apoptosis including chromatin condensation, nuclear fragmentation, vacuoles, and so on. Furthermore, our mechanism studies indicated that the S-layer protein may induce HT-29 cell apoptosis through the death receptor apoptotic pathway and mitochondrial pathway and impede cell invasion by inhibiting the synthesis of the PI3K/AKT pathway and FasL. These results demonstrated that the L. acidophilus CICC 6074 S-layer protein may be a potential anticarcinogenic agent.We report the solid-phase synthesis of N,N'-di(acylamino)-2,5-diketopiperazine, an acylhydrazide-based conformationally rigid 2,5-DKP scaffold having exocyclic N-N bonds. We also show that different combinations of acylhydrazides, carbazates, semicarbazides, amino acids, and primary amines can be used to synthesize a highly diverse collection of hybrid DKP molecules via the solid-phase submonomer synthesis route. Finally, we show incorporation of a methyl substituent in one of the carbon atoms of the DKP ring to generate chiral daa- and hybrid-DKPs without compromising the synthetic efficiency.We have developed a new dual-tip glucose sensing scanning electrochemical microcopy (SECM) probe by covalently immobilizing the glucose oxidase (GOD) enzyme onto an ultramicro electrode (UME) to measure the local glucose consumption of Streptococcus mutans (S. mutans) biofilms. GOD was immobilized on a novel enzyme immobilization matrix of functionalized multiwalled carbon nanotubes (f-MWCNTs) and 1-butyl-4-methylpyridinium hexafluorophosphate (ionic liquid/IL) packed into the etched Pt UME. The highly selective GOD-based SECM tip showed a high current density of 94.44 (±18.55) μA·mM-1·cm-2 from 0.10 to 1.0 mM at 37 °C as a result of the synergetic effects of f-MWCNTs and ionic liquid. The detection limit of the new 25 μm diameter glucose sensor is 10.0 μM with a linear range up to 4.0 mM. https://www.selleckchem.com/products/jsh-23.html The sensor was successfully used to quantify the rate of glucose consumption of S. mutans biofilms in the presence of sucrose. S. mutans catabolizes both glucose and sucrose, producing lactic acid, reducing the local pH, and causing dental caries. With sucrose, S. mutans produces exopolysaccharides to enhance bacterial adhesion on the tooth surface; subsequent lactic acid production reduces the local pH, resulting in dental caries. Because of the high selectivity of the sensor, we were able to quantify glucose consumption in the presence of sucrose. S. mutans preferentially consumed sucrose in a mixed diet of both sucrose and glucose. Furthermore, using this unique fast-response (∼2 s) glucose sensor, we were for the first time able to map the distribution of the glucose consumption profile in the local environment of S. mutans biofilm. These findings provide insight into how the fast-growing S. mutans creates nutrient-depleted regions that affect the survival and metabolic behavior of other bacterial species within oral biofilm.A method using machine learning (ML) is proposed to describe metal growth for simulations, which retains the accuracy of ab initio density functional theory (DFT) and results in a thousands-fold reduction in the computational time. This method is based on atomic energy decomposition from DFT calculations. Compared with other ML methods, our energy decomposition approach can yield much more information with the same DFT calculations. This approach is employed for the amorphous sodium system, where only 1000 DFT molecular dynamics images are enough for training an accurate model. The DFT and neural network potential (NNP) are compared for the dynamics to show that similar structural properties are generated. Finally, metal growth experiments from liquid to solid in a small and larger system are carried out to demonstrate the ability of using NNP to simulate the real growth process.Blue light-emitting polymers are in urgent demand for new-generation display and solid-state lighting devices fabricated through low-cost wet processing. However, their current performances are far from satisfactory. Here, we developed a series of poly(fluorene-co-dibenzothiophene-S,S-dioxides) (PFSOs) bearing different alkyl chains, alkoxyphenyl chains, or both alkylaryl and alkoxyphenyl side chains. The introduction of alkoxyphenyl groups moderately enhanced the electron-donating ability of the polymers, leading to more balanced charge carrier fluxes. Meanwhile, asymmetric bulky side chains enabled more pronounced variation of molecular conformation while restraining the intermolecular aggregation of polymers, resulting in a lower refractive index, thus facilitating light extraction compared with polymers based on the same two alkyl or alkoxyphenyl side chains. Polymer light-emitting devices based on PFSO-BMD with asymmetric side chains exhibited a maximum luminous efficiency of 8.58 cd A-1, associated with pure blue Commission Internationale de l'Eclairage coordinates of (0.