This work describes gold-catalyzed additions of vinyldiazo ketones to N-(o-alkynylphenyl)imines to yield 3-(furan-2-ylmethyl)-1H-indoles involving skeletal rearrangement; these new catalytic reactions are applicable to a wide range of substrates. We postulate a new mechanism involving an initial addition of diazo ketones to azomethine ylide intermediates to yield gold-containing N-alkylated indole intermediates that undergo proton-induced 1,3-group migrations, generating azallyl gold and allylic cation pairs.Crystalline block copolymers have been used to prepare plate-like colloidal systems with well-controlled size, shape, and size distribution. The isotropic-to-nematic (I-N) phase transition of the novel plate-like colloidal particle suspensions has been reported previously. In this work, we focus on the characterization of the solution structure of the crystals and the N-phase using small- and ultrasmall-angle X-ray scattering techniques (SAXS/USAXS). The system has polystyrene-block-poly(l-lactide) (PS-b-PLLA) block copolymer single crystals (BCSCs) with different sizes dispersed in p-xylene. These crystals are truncated lozenge in shape and have effective diameters ranging from 550 to 4000 nm with a uniform dry thickness of 18.0 nm. Scattering of the individual crystal in solution can be simplified using a disc model with a core layer of 9-10 nm due to the lower contrast of the tethered PS layer. BCSC suspensions filled in thin quartz capillaries are prepared for monitoring the structural information. SAXS measurements of the isotropic phase show a strong face-to-face correlation, indicating that platelets form small stacked clusters in solutions. The isotropic phase is thus a coexistence of single crystals and the stacked multiple-layered clusters. The face-to-face spacing, d, in the N phases is around 75-90 nm, which increases slightly upon increasing the size of crystals. For a given system, the spacing does not change with increasing concentration under the current experimental conditions. Finally, the possible formation of lamellar domains within the N phase is also discussed due to the lateral attraction of this system. These results demonstrate the importance of the lateral attraction between the polar crystalline PLLA blocks on the formation of the N phase the BCSCs self-assemble into larger sheets via the lateral attraction, which further enhances the I-N transition.Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from large cohorts of many different cancer types. The raw data are publicly available at various Cancer Research Data Commons. However, widespread reuse of these data sets is also facilitated by easy access to the processed quantitative data tables. We have created a data application programming interface (API) to distribute these processed tables, implemented as a Python package called cptac. We implement it such that users who prefer to work in R can easily use our package for data access and then transfer the data into R for analysis. Our package distributes the finalized processed CPTAC data sets in a consistent, up-to-date format. This consistency makes it easy to integrate the data with common graphing, statistical, and machine-learning packages for advanced analysis. Additionally, consistent formatting across all cancer types promotes the investigation of pan-cancer trends. The data API structure of directly streaming data within a programming environment enhances the reproducibility. Finally, with the accompanying tutorials, this package provides a novel resource for cancer research education. View the software documentation at https//paynelab.github.io/cptac/. View the GitHub repository at https//github.com/PayneLab/cptac.Despite the outstanding relevance of proton transfer reactions, investigations of the solvent dependence on the elementary step are scarce. We present here a probe system of a pyrene-based photoacid and a phosphine oxide, which forms stable hydrogen-bonded complexes in aprotic solvents of a broad polarity range. By using a photoacid, an excited-state proton transfer (ESPT) along the hydrogen bond can be triggered by a photon and observed via fluorescence spectroscopy. Two emission bands could be identified and assigned to the complexed photoacid (CPX) and the hydrogen-bonded ion pair (HBIP) by a solvatochromism analysis based on the Lippert-Mataga model. The latter indicates that the difference in the change of the permanent dipole moment of the two species upon excitation is ∼3 D. This implies a displacement of the acidic hydrogen by ∼65 pm, which is in quantitative agreement with a change of the hydrogen bond configuration from O-H···O to -O···H-O+.In low-temperature flash photolysis of NH3/O2/N2 mixtures, the NH2 consumption rate and the product distribution is controlled by the reactions NH2 + HO2 → products (R1), NH2 + H (+M) → NH3 (+M) (R2), and NH2 + NH2 (+M) → N2H4 (+M) (R3). In the present work, published flash photolysis experiments by, among others, Cheskis and co-workers, are re-interpreted using recent direct measurements of NH2 + H (+N2) and NH2 + NH2 (+N2) from Altinay and Macdonald. To facilitate analysis of the FP data, relative third-body collision efficiencies compared to N2 for R2 and R3 were calculated for O2 and NH3 as well as for other selected molecules. Results were in good agreement with the limited experimental data. Based on reported NH2 decay rates in flash photolysis of NH3/O2/N2, a rate constant for NH2 + HO2 → NH3 + O2 (R1a) of k1a = 1.5(±0.5) × 1014 cm3 mol-1 s-1 at 295 K was derived. https://www.selleckchem.com/products/go-6983.html This value is higher than earlier determinations based on the FP results but in good agreement with recent theoretical work. Kinetic modeling of reported N2O yields indicates that NH2 + HO2 → H2NO + O (R1c) is competing with R1a, but perturbation experiments with addition of CH4 indicate that it is not a dominating channel. Measured HNO profiles indicate that this component is formed directly by NH2 + HO2 → HNO + H2O (R1b), but theoretical work indicates that R1b is only a minor channel. Based on this analysis, we estimate k1c = 2.5 × 1013 cm3 mol-1 s-1 and k1b = 2.5 × 1012 cm3 mol-1 s-1 at 295 K, with significant uncertainty margins.