https://www.selleckchem.com/products/erastin.html Miniaturized amphibians of the genus Brachycephalus are phenotypically diverse. The species of Brachycephalus have bufoniform or leptodactyliform Baupläne and any of three skeletal states nonhyperossified, hyperossified without dorsal shield, and hyperossified with dorsal shield. We integrate high-resolution microcomputed tomography, geometric morphometrics, and an estimate of molecular phylogenetic relationships to investigate skull diversity in shape and size-shape space in selected species of Brachycephalus. Skull diversity amongst species of Brachycephalus can be partitioned into shape and size-shape space according to the four conditions of skeletal states-Baupläne, namely, nonhyperossified leptodactyliform, nonhyperossified bufoniform, hyperossified bufoniform without dorsal shield, and hyperossified bufoniform with dorsal shield. Skull diversity in shape and size-shape space in nonhyperossified leptodactyliform species of Brachycephalus is markedly larger, when compared to skull diversity in species of the three other conditions of skeletal states-Baupläne. Variation in skull shape scales with size across Brachycephalus and, therefore, can be explained by allometry. Skull diversity, Baupläne, and skeletal states covary to a large extent with monophyletic lineages of Brachycephalus, as revealed by a mitochondrial DNA species tree. Nonhyperossified bufoniform species and hyperossified bufoniform species with or without dorsal shield are monophyletic lineages, as inferred from a mitochondrial DNA species tree. Nonhyperossified leptodactyliform species of Brachycephalus do not share, however, a most recent common ancestor. The nonhyperossified leptodactyliform species of Brachycephalus, due to their marked skull diversity and lack of monophyly, emerge as evolutionarily complex. Therefore, further sampling of the nonhyperossified leptodactyliform condition of skeletal states-Baupläne will be necessary to further un