Although chlorinated polyfluoroalkyl ether sulfonic acid (Cl-PFESA) has been reported to be widespread in different environmental matrices of China, its exposure data in the general Chinese population are very limited. In the present study, the serum-to-whole-blood ratio was first assessed for 62 Cl-PFESA (mean/median 2.07/1.82) based on its paired concentrations (n = 36), which allows a comparison in different blood matrices. The exposure levels of Cl-PFESAs in the general population were investigated by collecting blood samples (n = 1516) from residents of seven cities in central and eastern China. 62 Cl-PFESA was observed as the third-highest contributing polyfluoroalkyl substance (PFAS) (8.69%), with the median concentration at 2.18 ng/mL, indicating its importance for assessing the human exposure risks of PFASs. The regional difference between 62 Cl-PFESA and perfluorooctane sulfonate (PFOS) can be explained by their use pattern in China. Overall, similar to PFOS, 62 Cl-PFESA displays significantly increasing levels with increasing age for both males and females, with significantly higher levels in males. However, a significant sex dependence was found for 62 Cl-PFESA in one specific age group (41-60), while there was no significance in the other groups although males display higher levels than females. Our study provides robust data regarding human exposure to 62 Cl-PFESA in the general population in central and eastern China.The environmental consequences of electric vehicles (EV) have been extensively studied, but the literature on their health impacts is scant. At the same time, fine particulate matter (PM2.5), for which transportation is a major source, remains an important public health issue in the United States. Motivated by recent developments in epidemiology and reduced-form air pollution modeling, as well as reductions in power plant emissions, we conduct an updated assessment of health benefits of light-duty vehicle electrification in large metropolitan areas (MSAs) in the United States. We first calculate MSA-specific mortality impacts per mile attributable to fine particles from internal combustion engine vehicle (ICEV) tailpipe emissions of PM2.5, SO2, NOx, NH3, and volatile organic compounds, and power plant emissions of PM2.5, SO2, and NOx. We complement these with changes in greenhouse-gas emissions associated with vehicle electrification. We find that electrification leads to large benefits, even with EVs powered exclusively by fossil fuel plants. VMT-weighted mean benefits in the 53 MSAs are 6.9 ¢/mile ($10,400 per 150,000 miles), 83% of which (5.7 ¢/mile or $8600 per 150,000 miles) comes from reductions in PM2.5-attributable mortality. Variability among the MSAs is large, with benefits ranging from 3.4 ¢/mile ($5100 per 150,000 miles) in Rochester, NY, to 11.5 ¢/mile ($17,200 per 150,000 miles) in New York, NY. This large variability suggests incentives should vary by MSA and presents an opportunity to target areas for EV deployment aimed at maximizing public health benefits. Impacts are smaller when EVs disproportionately replace newer ICEV models but EVs still lead to positive benefits in all MSAs. Vehicle electrification in urban areas is an opportunity to achieve large public health benefits in the United States in the short term.The rare earth metal Gd(III), Yb(III), Lu(III), Eu(III), Tb(III) and Ho(III) complexes 1-6 with 2-((2-(pyridin-2-yl)hydrazono)methyl)quinolin-8-ol (H-L) as ligands were synthesized. https://www.selleckchem.com/products/ag-120-Ivosidenib.html The in vitro cytotoxicity assay indicated that the cytotoxicity of 1 was equivalent to cisplatin and higher than that of H-L and other complexes towards T24 tumor cells. The mechanism study indicated that 1 caused significant up-regulation of the proteins p27, p21 and p53 in T24 cells and cell cycle arrest in G2 phase. In addition, 1 induced effective T24 cells apoptosis via mitochondrial dysfunction pathway, which was indicated by changes in mitochondrial membrane potential (Δψ), reactive oxygen species (ROS), intracellular Ca2+ and the mitochondria-related proteins (including cytochrome C (Cyt C), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated x (Bax) and apoptotic protease activating factor-1 (Apaf-1)). Moreover, 1 could activate caspase-3/8/9 in T24 cells. Therefore, complex 1 is a promising and potent anticancer drug candidate.Vasoactive intestinal polypeptide (VIP) is involved in gastric smooth muscle relaxation, vasodilation, and gastric secretions. It is also associated with appetite regulation, eliciting an anorexigenic response in mammals, birds, and fish; however, the molecular mechanism mediating this response is not well understood. The aim of the present study was thus to investigate hypothalamic mechanisms mediating VIP-induced satiety in 7-d old Japanese quail. In experiment 1, chicks that received intracerebroventricular (ICV) injection of VIP had reduced food intake for up to 180 min after injection and reduced water intake for 90 min. In experiment 2, VIP-treated chicks that were food restricted did not reduce water intake. In experiment 3, there was increased c-Fos immunoreactivity in the arcuate (ARC) and dorsomedial (DMN) nuclei of the hypothalamus in VIP-injected quail. In experiment 4, ICV VIP was associated with decreased neuropeptide Y mRNA in the ARC and DMN and an increase in corticotropin releasing factor mRNA in the DMN. In experiment 5, VIP-treated chicks displayed fewer feed pecks and locomotor behaviors. These results demonstrate that central VIP causes anorexigenic effects that are likely associated with reductions in orexigenic tone involving the ARC and DMN.During the last 10 to 15 yr, in vitro research to predict antral follicle growth and oocyte maturation has delivered interesting advances in the knowledge of processes regulating follicle growth and developmental competence of oocytes. This review discusses the contribution of cumulus and mural granulosa cells in the process of oocyte maturation and cumulus expansion in cumulus-oocyte complexes (COCs) from follicles of different sizes and shows that differences in gene expression in oocytes, granulosa, and theca cells of small and large follicles impact the success of in vitro blastocyst development. In addition, the molecular mechanisms by which COC metabolism and antioxidant defense provide oocyte competence are highlighted. Furthermore, new insights and perspectives on molecular and cellular regulation of in vitro oocyte maturation are emphasized.