https://www.selleckchem.com/products/BIBW2992.html Carbon-based materials have been applied as cost-effective electrocatalysts to reduce carbon dioxide (CO2) into valuable chemicals. Here, an environment-friendly method is proposed to obtain nitrogen-doped porous carbons (NPCs) from digested sludge, which is an abundant waste product from sewage treatment plants. The materials were used as a metal-free electrocatalyst for electrochemical reduction of CO2 to formate. The synthesized material (NPC-600) had a mesoporous and microporous structure with a specific surface area of 246.21 m2 g-1 and pore volume of 0.494 cm3 g-1. Active sites based on nitrogen atoms accounted for 2.98 atom% of the content and included pyrrolic-, pyridinic-, and graphitic-N, which is useful for CO2 adsorption and electron transfer in electrochemical reduction. The Faradaic efficiency for formate production from CO2 in the presence of NPC-600 was 68% at the potential of -1.5 V vs. SCE. Tafel analysis indicated that the pathway of CO2 conversion involved the reduction of CO2 to CO2*- intermediate, which was then converted to HCOO*- and finally formate.A relevant but yet unconsidered subset of particles that may alter the fate of extracellular antibiotic resistance genes (eARGs) are nano-scale particles (NPs), which are ubiquitous in natural environments and have unique properties. In this study, sorption isotherms were developed describing the association of linear DNA fragments isolated from widespread eARGs (blaI and nptII) with either micon-sized kaolinite or silica nanoparticles (SNPs), to determine if sorption capacity was enhanced at the nanoscale. For each isotherm, eARG fragments were added at five starting concentrations (5-40 μg/mL) to mixed batch systems with 0.25 g of particles and nuclease-free water. Sorption was quantified by the removal of DNA from solution, as detected by a Qubit fluorimeter. Isotherms were developed for eARGs of various fragment lengths (508, 680 and 861 bp),