https://www.selleckchem.com/GSK-3.html RNA in situ hybridization can be time-consuming and difficult to troubleshoot. Here, we provide an optimized protocol for maize leaf tissue, though it can be applied to other plant tissues such as shoot apical meristems, embryos, and floral organs. We generate three >100 bp unique antisense probes for each gene of interest and hybridize them to tissue sections. For complete details on the use and execution of this protocol, please refer to Bezrutczyk et al. (2021).Quantitative analysis using a turn-on fluorescent probe is inherently difficult due to the dependency of the fluorescence intensity on the probe concentration. To overcome this limitation, we developed an in situ quantification method using a turn-on fluorescent probe and a standard fluorophore, which are colocalized by protein tag technology. This protocol describes the synthesis of a Zn2+ probe, named ZnDA-1H, and the procedure to quantify the labile Zn2+ concentration in the Golgi of live HeLa cells by confocal fluorescence microscopy. For complete details on the use and execution of this protocol, please refer to Kowada et al. (2020).Induced pluripotent stem cells (iPSCs) offer a potentially unlimited source to generate endothelial cells (ECs) for numerous applications. Here, we describe a 7-day protocol to differentiate up to 55 million vascular endothelial cells (viECs) from 3.5 million human iPSCs using small molecules to regulate specific transcription factors. We also describe a parallel-plate flow chamber system to study EC behavior under physiological shear stress. For complete details on the use and execution of this protocol, please refer to Atchison et al. (2020).Manipulating specific neural activity by targeted ultrasound intervention is a powerful method to gain causal insight into brain functions and treat brain disorders. The technique of sonogenetics enables controlling of cells that are genetically modulated with ultrasound-sensitive ion channels.