Increasing grain yield of maize (Zea mays L.) is required to meet the rapidly expanding demands for maize-derived food, feed, and fuel. Breeders have enhanced grain productivity of maize hybrids by pyramiding desirable characteristics for larger ears. However, loci selected for improving grain productivity remain largely unclear. Here, we show that a serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 (KNR6) determines pistillate floret number and ear length. Overexpression of KNR6 or introgression of alleles lacking the insertions of two transposable elements in the regulatory region of KNR6 can significantly enhance grain yield. Further in vitro evidences indicate that KNR6 can interact with an Arf GTPase-activating protein (AGAP) and its phosphorylation by KNR6 may affect ear length and kernel number. This finding provides knowledge basis to enhance maize hybrids grain yield.The charge density wave in the high-temperature superconductor YBa2Cu3O7-x (YBCO) has two different ordering tendencies differentiated by their c-axis correlations. These correspond to ferro- (F-CDW) and antiferro- (AF-CDW) couplings between CDWs in neighbouring CuO2 bilayers. This discovery has prompted several fundamental questions how does superconductivity adjust to two competing orders and are either of these orders responsible for the electronic reconstruction? Here we use x-ray diffraction to study YBa2Cu3O6.67 as a function of magnetic field and temperature. We show that regions with F-CDW correlations suppress superconductivity more strongly than those with AF-CDW correlations. This implies that an inhomogeneous superconducting state exists, in which some regions show a fragile form of superconductivity. By comparison of F-CDW and AF-CDW correlation lengths, it is concluded that F-CDW ordering is sufficiently long-range to modify the electronic structure. Our study thus suggests that F-CDW correlations impact both the superconducting and normal state properties of YBCO.HIV prevalence varies markedly throughout Africa, and it is often presumed areas of higher HIV prevalence (i.e., hotspots) serve as sources of infection to neighboring areas of lower prevalence. However, the small-scale geography of migration networks and movement of HIV-positive individuals between communities is poorly understood. Here, we use population-based data from ~22,000 persons of known HIV status to characterize migratory patterns and their relationship to HIV among 38 communities in Rakai, Uganda with HIV prevalence ranging from 9 to 43%. We find that migrants moving into hotspots had significantly higher HIV prevalence than migrants moving elsewhere, but out-migration from hotspots was geographically dispersed, contributing minimally to HIV burden in destination locations. Our results challenge the assumption that high prevalence hotspots are drivers of transmission in regional epidemics, instead suggesting that migrants with high HIV prevalence, particularly women, selectively migrate to these areas.Cardiac hypertrophy (CH) is an independent risk factor for many cardiovascular diseases, and is one of the primary causes of morbidity and mortality in elderly people. Pathological CH involves excessive protein synthesis, increased cardiomyocyte size, and ultimately the development of heart failure. Myotubularin-related protein 14 (MTMR14) is a member of the myotubularin (MTM)-related protein family, which is involved in apoptosis, aging, inflammation, and autophagy. However, its exact function in CH is still unclear. Herein, we investigated the roles of MTMR14 in CH. We show that MTMR14 expression was increased in hypertrophic mouse hearts. Mice deficient in heart MTMR14 exhibited an aggravated aortic-banding (AB)-induced CH phenotype. In contrast, MTMR14 overexpression prevented pressure overload-induced hypertrophy. At the molecular level, prevention of CH in the absence of MTMR14 involved elevations in Akt pathway components, which are key elements that regulate apoptosis and cell proliferation. These results demonstrate that MTMR14 is a new molecular target for the treatment of CH.The molecular mechanism responsible for Helicobacter pylori infection-mediated gastritis and carcinogenesis is not yet clear. Increased evidence suggests that chronic gastritis and elevated gastric epithelial cell (GEC) apoptosis are crucial events during stomach carcinoma transformation. PUMA is a potent proapoptotic Bcl-2 protein and mediates acute tissue injury. In this study, we aimed to investigate the role of PUMA in GEC apoptosis and inflammation induced by H. pylori infection. As a result, we found that PUMA expression was elevated in gastritis tissues compared with uninvolved tissues, and it was correlated with the severity of apoptosis and gastritis. In mice, PUMA mRNA and protein were markedly induced in GECs upon induction of gastritis by H. pylori. PUMA-deficient mice were highly resistant to apoptosis and gastritis induced by H. pylori. Furthermore, the transcription factor NF-κB p65 binds to PUMA promoter to activate PUMA transcription after H. pylori infection. In addition, NF-κB inhibitor could rescue H. pylori-induced apoptosis and gastritis. Finally, H. pylori-induced activation of p-p65 and PUMA was mediated via Toll-like receptor 2 (TLR2) and blocked in TLR2 knockout mice. https://www.selleckchem.com/products/azd5153-6-hydroxy-2-naphthoic-acid.html Taken together, these results verified the pro-inflammatory effect of PUMA in H. pylori-infected gastric tissue. Moreover, TLR2/NF-κB-mediated transcriptional regulation of PUMA contributes to the pathogenesis of H. pylori-infected gastritis.Chemoresistance is one of the major reasons leading to ovarian cancer high mortality and poor survival. Studies have shown that the alteration of cellular autophagy is associated with cancer cell chemoresistance. Here, we investigated whether the ovarian cancer chemoresistance is associated with the autophagy induced by the inhibitor of DNA binding 1 (ID1). By using gene overexpression or silencing, luciferase assay and human specimens, we show that ID1 induces high autophagy and confers cancer cell chemoresistance. The mechanistic study demonstrates that ID1 first activates the NF-κB signaling through facilitating the nuclear translocation of NF-κB p65, which strengthens the expression and secretion of IL-6 from cancer cells to subsequently activate the signal transducer and activator of transcription 3 (STAT3) through the protein phosphorylation at Y705. We further identified that STAT3 functions to promote the transcription of the activating transcription factor 6 (ATF6), which induces endoplasmic reticulum stress to promote cellular autophagy, granting cancer cell resistance to both cisplatin and paclitaxel treatment.