https://www.selleckchem.com/products/ly333531.html Two kinds of experimental ferritic/martensitic steels (HT-9) with different Si contents were designed for the fourth-generation advanced nuclear reactor cladding material. The effects of Si content and tempering temperature on microstructural evolution and mechanical properties of these HT-9 steel were studied. The microstructure of experimental steels after quenching and tempering were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM); the mechanical properties were investigated by means of tensile test, Charpy impact test, and hardness test. The microscopic mechanism of how the microstructural evolution influences mechanical properties was also discussed. Both XRD and TEM results showed that no residual austenite was detected after heat treatment. The results of mechanical tests showed that the yield strength, tensile strength, and plasticity of the experimental steels with 0.42% (% in mass) Si are higher than that with 0.19% Si, whereas hardness and toughness did not change much; when tempered at 760 °C, the strength and hardness of the experimental steels decreased slightly compared with those tempered at 710 °C, whereas plasticity and toughness increased. Further analysis showed that after quenching at 1050 °C for 1 h and tempering at 760 °C for 1.5 h, the comprehensive mechanical properties of the 0.42% Si experimental steel are the best compared with other experimental steels.Advancement and development in bone tissue engineering, particularly that of composite scaffolds, are of great importance for bone tissue engineering. We have synthesized polymeric matrix using biopolymer (β-glucan), acrylic acid, and nano-hydroxyapatite through free radical polymerization method. Bioactive nanocomposite scaffolds (BNSs) were fabricated using the freeze-drying method and Ag was coated by the dip-coating method. The scaffolds have been characterized by