Bio-entity Coreference Resolution focuses on identifying the coreferential links in biomedical texts, which is crucial to complete bio-events' attributes and interconnect events into bio-networks. Previously, as one of the most powerful tools, deep neural network-based general domain systems are applied to the biomedical domain with domain-specific information integration. However, such methods may raise much noise due to its insufficiency of combining context and complex domain-specific information. In this paper, we explore how to leverage the external knowledge base in a fine-grained way to better resolve coreference by introducing a knowledge-enhanced Long Short Term Memory network (LSTM), which is more flexible to encode the knowledge information inside the LSTM. Moreover, we further propose a knowledge attention module to extract informative knowledge effectively based on contexts. https://www.selleckchem.com/ The experimental results on the BioNLP and CRAFT datasets achieve state-of-the-art performance, with a gain of 7.5 F1 on BioNLP and 10.6 F1 on CRAFT. Additional experiments also demonstrate superior performance on the cross-sentence coreferences. Supplementary data are available at Bioinformatics online. Supplementary data are available at Bioinformatics online.A concise synthesis of a plasmenylethanolamine (PlsEtn-[160/181 n-9]), known as antioxidative phospholipids commonly found in cell membranes, has been achieved from an optically active known diol through 8 steps. The key transformations for the synthesis of PlsEtn-[160/181 n-9] are (1) regio- and Z-selective vinyl ether formation via the alkylation of a lithioalkoxy allyl intermediate with an alkyl iodide, and (2) a one-pot phosphite esterification-oxidation sequence to construct the ethanolamine phosphonate moiety in the presence of the vinyl ether functionality. The piperidine salt of synthetic PlsEtn-[160/181 n-9] was desalinated through reversed-phase high-performance liquid chromatography purification.T cells play a critical role in cellular immune responses to pathogens and cancer and can be activated and expanded by MHC-presented antigens contained in peptide vaccines. We present a machine learning method to optimize the presentation of peptides by class II MHCs by modifying their anchor residues. Our method first learns a model of peptide affinity for a class II MHC using an ensemble of deep residual networks, and then uses the model to propose anchor residue changes to improve peptide affinity. We use a high throughput yeast display assay to show that anchor residue optimization improves peptide binding. Supplementary information Supplementary data are available at Bioinformatics online.Aspergillus fumigatus produces diverse secondary metabolites whose biological functions and regulation remain to be understood. Despite the importance of the conidia for this fungus, the role of the conidia-born metabolite fumiquinazoline C (FqC) is unclear. Here, we describe a dual function of the cell-wall integrity pathway in regulating FqC biosynthesis dictated by the MAPK kinase MpkA, which phosphorylates one of the nonribosomal peptide synthetases enzymes of the cluster (FmqC), and the transcription factor RlmA, which directly regulates the expression of fmq genes. Another level of crosstalk between the FqC regulation and the cell physiology is described since the deletion of the stress-responsive transcription factor sebA provokes derepression of the fmq cluster and overproduction of FqC. Thus, we describe a mechanism by which A. fumigatus controls FqC biosynthesis orchestrated by MpkA-RlmA and SebA and hence enabling survival and adaptation to the environmental niche, given that FqC is a deterrent of ameba predation.The study aimed to evaluate the probiotic and safety properties of lactic acid bacterial (LAB) strains isolated from the gut microbiota of honey bee Apis mellifera L., since this source remains a promising reservoir of microbial diversity. A total of five bacterial isolates were molecularly identified using 16S rRNA gene sequencing as Enterococcus faecalis-HBE1, Lactobacillus brevis-HBE2, Enterococcus faecalis-HBE3, Enterococcus faecalis-HBE4 and Lactobacillus casei-HBE5. Gut tolerance conditions (low pH and bile salt) were evaluated. Exopolysaccharides (EPS) production, hemolytic, antioxidant activity, resistance toward antibiotics and technological characteristics (starter activity, pH and proteolysis) were examined. The five isolates showed a high survival rate (>95%), under gastrointestinal tract conditions indicating excellent potential for application as probiotics. The isolates showed no hemolytic activities and good acidification rates in the range of pH 4.6-4.98 after incubation at 37°C for 24h. The isolates exhibited promising proteolytic activity as well as DPPH radical scavenging activity in the range of 16.52-59.39%. All the tested isolates had the capability to produce exopolysaccharides except Lactobacillus casei-HBE5. These results put forward that lactic acid bacterial strain isolated from honey bee workers can be considered as promising candidates for future applications as starter cultures and could constitute new potential probiotics for the production of functional dietary products promoting health benefits.Bacterial infection is a highly complex biological process involving a dynamic interaction between the invading microorganism and the host. Specifically, intracellular pathogens seize control over the host cellular processes including membrane dynamics, actin cytoskeleton, phosphoinositide metabolism, intracellular trafficking and immune defense mechanisms to promote their host colonization. To accomplish such challenging tasks, virulent bacteria deploy unique species-specific secreted effectors to evade and/or subvert cellular defense surveillance mechanisms to establish a replication niche. However, despite superficially similar infection strategies, diverse Rickettsia species utilize different effector repertoires to promote host colonization. This review will discuss our current understandings on how different Rickettsia species deploy their effector arsenal to manipulate host cellular processes to promote their intracytosolic life within the mammalian host.