https://www.selleckchem.com/products/lgx818.html 9-10.5 pg/mLurine. Only one sample showed a value above the limit of quantification (10.5 pg/mLurine). The absence of a statistical difference between the mean values for workers and the control group which were compared suggests that in this specific setting, no professional exposure occurs. Furthermore, considering the very low level of aflatoxin M1 in the collected urine samples, the contribution from the diet to the overall exposure is to be considered negligible.BACKGROUND AND OBJECTIVES Brexpiprazole is an atypical antipsychotic approved for the treatment of schizophrenia and major depressive disorders in adults. The structure of brexpiprazole contains well-known structural alerts like a thiophene ring, piperazine ring and quinolinone motifs. Additionally, the literature reveals that its structural analog, aripiprazole, could generate reactive intermediates. However, the bioactivation potential of brexpiprazole is yet unknown. Therefore, this study was planned to identify and characterize reactive adducts of brexpiprazole and its metabolites. METHODS Based on the reactivity, the potential atomic sites for a reactive intermediate generation were predicted by a xenosite web predictor tool for glutathione, cyanide, protein and DNA. To study the metabolic activation of brexpiprazole, the drug was individually incubated for 2 h at 37 °C with pooled male rat liver microsomes and human liver microsomes in microcentrifuge tubes fortified with glutathione/N-acetyl cysteine. Nicotinamide adenine dinucleotide phosphate reduced tetrasodium salt was used as a co-factor. RESULTS A total of six glutathione and N-acetyl cysteine conjugates of brexpiprazole metabolites were identified and characterized using ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. Reactive metabolite 1 (RM1), RM3, RM4 and RM6 reactive conjugates were formed due to reactive quinone-imine or quinone intermed