https://www.selleckchem.com/products/bmn-673.html We show that back-action noise in the momentum measurement of a damped forced oscillator can be suppressed because of damping. Using this principle, we propose a back-action suppressed interferometer, in which the signal is a function of momentum of atoms in a harmonic trap. We show that the quantum noise limited sensitivity of this interferometer can overcome the standard quantum limit of force sensing, even at frequencies much smaller than the eigen frequency of the harmonic trap.We perform single-shot frequency domain holography to measure the ultrafast spatio-temporal phase change induced by the optical Kerr effect and plasma in flexible Corning Willow Glass during femtosecond laser-matter interactions. We measure the nonlinear index of refraction ($ n_2 $n2) to be $(3.6 \pm 0.1) \times 10^ - 16\;\rm cm^2/\rm W $(3.6±0.1)×10-16cm2/W and visualize the plasma formation and recombination on femtosecond time scales in a single shot. To compare with the experiment, we carry out numerical simulations by solving the nonlinear envelope equation.We report on the development of a high-power mid-infrared frequency comb with 100 MHz repetition rate and 100 fs pulse duration. Difference frequency generation is realized between two branches derived from an Erfiber comb, amplified separately in Ybfiber and Erfiber amplifiers. Average powers of 6.7 W and 14.9 W are generated in the 2.9 µm idler and 1.6 µm signal, respectively. With high average power, excellent beam quality, and passive carrier-envelope phase stabilization, this light source is a promising platform for generating broadband frequency combs in the far infrared, visible, and deep ultraviolet.We study spontaneous parametric down conversion (SPDC) in a one-dimensional photonic crystal designed to operate in a doubly resonant configuration, where the frequencies of the pump and the generated photons are both tuned to band-edge resonances. We investigate the spectral c