https://www.selleckchem.com/products/Vorinostat-saha.html Nodal surface-based topological semimetals (TSMs) are drawing attention due to their unique excitation and plasmon behaviors. However, only nodal flat-surface and nodal sphere TSMs are theoretically proposed due to strict symmetry requirements. Here, we propose that a series of surface-based topological phases can be realized in a tight-binding (TB) model with sublattice symmetry. These topological phases, named as nodal flexible-surface semimetals, include not only nodal surface and nodal sphere TSMs but also novel phases, like nodal tube, nodal crossbar, and nodal hourglass-like surface TSMs. According to the TB model, a family of carbon nanotube networks are then identified as nodal flexible-surface TSMs by first-principles calculations, and the topological phase transitions between these TSMs can be induced by strains. Moreover, the nodal flexible-surface TSMs with intrinsic high density of states at the Fermi level and special drumhead surface states are promising for studying high-temperature superconductors and strong correlation effects.The copper-catalyzed enantioselective intramolecular hydroalkoxylation of unactivated alkenes for the synthesis of tetrahydrofurans, phthalans, isochromans, and morpholines from 4- and 5-alkenols is reported. The substrate scope is complementary to existing enantioselective alkene hydroalkoxylations and is broad with respect to substrate backbone and alkene substitution. The asymmetric induction and isotopic labeling studies support a polar/radical mechanism involving enantioselective oxycupration followed by C-[Cu] homolysis and hydrogen atom transfer. Synthesis of the antifungal insecticide furametpyr was accomplished.Modification of BINOL units has been well examined via Rh-catalyzed C-H activation and functionalization reactions by using ester carbonyls as directing groups and alkenes as coupling partners. The one-pot strategy was an efficient protocol for the rapi