Through synthesizing evidence for each of the models, we demonstrate to scholars and practitioners what is known about the interactional effects of contextual and personal factors on employee creativity, and what still needs to be studied if we are to take the field of research on creativity in the digital era forward.Dye-doped nematic side-chain liquid-crystalline polymers possess extraordinary large optical nonlinearity and ability to store the induced orientational deformations in a glassy state, which makes them a very promising material for photonic applications. In this study, the phase structures were generated and recorded in the bulk of a 50-μm layer of a nematic liquid-crystalline side-chain polymer, containing polyacrylate backbone, spacer having five methylene groups, and phenyl benzoate mesogenic fragment. The polymer was doped with KD-1 azodye. The director field deformations induced by the light beam close to the TEM01 mode were studied for different geometries of light-polymer interaction. The phase modulation depth of 2π was obtained for the 18-μm spacing between intensity peaks. The experimental data were analyzed based on the elastic continuum theory of nematics. The possibility to induce and record positive and negative microlenses in the polymer bulk was shown experimentally.Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.Graphene quantum dots (GQDs) can be highly beneficial in various fields due to their unique properties, such as having an effective charge transfer and quantum confinement. However, defects on GQDs hinder these properties, and only a few studies have reported fabricating high-quality GQDs with high crystallinity and few impurities. In this study, we present a novel yet simple approach to synthesizing high-quality GQDs that involves annealing silicon carbide (SiC) under low vacuum while introducing hydrogen (H) etching gas; no harmful chemicals are required in the process. The fabricated GQDs are composed of a few graphene layers and possess high crystallinity, few defects and high purity, while being free from oxygen functional groups. The edges of the GQDs are hydrogen-terminated. High-quality GQDs form on the etched SiC when the etching rates of Si and C atoms are monitored. The size of the fabricated GQDs and the surface morphology of SiC can be altered by changing the operating conditions. Collectively, a novel route to high-quality GQDs will be highly applicable in fields involving sensors and detectors.The aim of the present study was to assess the potential role of some biological, psychological, and social factors to predict the presence of painful temporomandibular disorders (TMDs) in a TMD-patient population. The study sample consisted of 109 consecutive adult patients (81.7% females; mean age 33.2 ± 14.7 years) who were split into two groups based on Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) diagnoses painful TMD and non-painful TMD. The presence of pain was adopted as the depended variable to be identified by the following independent variables (i.e., predictors) age, gender, bruxism, tooth wear, chewing gum, nail biting, perceived stress level, chronic pain-related impairment (GCPS), depression (DEP), and somatization (SOM). Single-variable logistic regression analysis showed a significant relationship between TMD pain and DEP with an odds ratio of 2.9. Building up a multiple variable model did not contribute to increase the predictive value of a TMD pain model related to the presence of depression. Findings from the present study supported the existence of a relationship between pain and depression in painful TMD patients. In the future, study designs should be improved by the adoption of the best available assessment approaches for each factor.Molar balances of continuous and batch reacting systems with a simple reaction are analyzed from the point of view of finding relationships between the thermodynamic driving force and the chemical reaction rate. Special attention is focused on the steady state, which has been the core subject of previous similar work. It is argued that such relationships should also contain, besides the thermodynamic driving force, a kinetic factor, and are of a specific form for a specific reacting system. More general analysis is provided by means of the non-equilibrium thermodynamics of linear fluid mixtures. Then, the driving force can be expressed either in the Gibbs energy (affinity) form or on the basis of chemical potentials. The relationships can be generally interpreted in terms of force, resistance and flux.Obesity is associated with excess body fat accumulation that can cause hyperglycemia and reduce skeletal muscle function and strength, which characterize the development of sarcopenic obesity. https://www.selleckchem.com/products/takinib.html In this study, we aimed to determine the mechanism whereby acid-hydrolyzed silk peptide (SP) prevents high-fat diet (HFD)-induced obesity and whether it regulates glucose uptake and muscle differentiation using in vivo and in vitro approaches. Our findings demonstrate that SP inhibits body mass gain and the expression of adipogenic transcription factors in visceral adipose tissue (VAT). SP also had an anti-diabetic effect in VAT and skeletal muscle because it upregulated glucose transporter type 4 (GLUT4) and uncoupling protein 3 (UCP3) expression. Furthermore, SP reduced ubiquitin proteasome and promoted myoblast determination protein 1 (MyoD)/myogenic factor 4 (myogenin) expression, implying that it may have potential for the treatment of obesity-induced hyperglycemia and obesity-associated sarcopenia.