On the other hand, C. erythropterus has the highest Hg concentration due to its relatively high trophic level position. The average THQ value of metals in fish tissue decrease in the order of As > Hg > Pb > Cd > Cr and the total THQ of average metal concentration in fish species decreased in the order of C. auratus > C. erythropterus > H. molitrix. Both THQ and total THQ is below 1, suggested no non-carcinogenic human health risk of fish consumption. However, TR of As in C. auratus was above 1.00E-04 threshold value, indicated potential carcinogenic human health risk. The results from this study indicate that although moderately to heavily contamination of Hg, As, and Cd occurred in Dianchi Lake sediment, only Hg and As tend to transport to surface water and accumulate in commercial fish due to their higher mobility in sediment. Triafamone is a highly effective, low toxicity sulfonamide herbicide widely used for weeding paddy fields. The triafamone photodegradation in water environment must be explored for its ecological risk assessment. In this work, the effects of chemical fertilizer (urea, diammonium phosphate, potassium chloride, and potassium sulfate), urea metabolites (CO32- and HCO3-), and organic fertilizers (unfermented organic fertilizer [UOF] and fermented organic fertilizer [FOF]) on the triafamone photodegradation in aqueous solution under simulated sunlight were evaluated. Results showed that the triafamone photodegradation rate was unaffected by urea. The half-life of triafamone decreased from 106.8 h to 68.4 h with increasing diammonium phosphate concentration. Potassium chloride, potassium sulfate, CO32-, and HCO3- could accelerate the triafamone photodegradation at all concentrations, whereas the degradation rate of triafamone decreased when the concentration of potassium sulfate or CO32- was 2000 mg/L. Triafamone photodegradation was promoted by 20-200 mg/L UOF and FOF but decreased to 236.6 and 142.3 h when the concentration reached 2000 mg/L. Twenty-three transformation products were isolated and identified from triafamone by using ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry under simulated sunlight irradiation, and the kinetic evolution of these products was explored. https://www.selleckchem.com/products/gsk-j4-hcl.html Five possible degradation pathways were inferred, including the cleavage of C-N, C-C, and C-O bonds; CO bond hydrogenation; the cleavage of triazine ring; the cleavage of the sulfonamide bridge; hydroxylation; hydroxyl substitution; methylation; demethylation; amination; and rearrangement. In summary, these results are important for elucidating the environmental fate of triafamone in aquatic systems and further assessing environmental risks. Halophytes play an important role in the bioremediation of saline soils. Increased evidence has revealed that plant growth-promoting rhizobacteria (PGPR) have colonized the halophytic rhizosphere, and they have evolved the capacity to reduce salt stress damage to the host. However, the mechanism by which halophytes attract and recruit beneficial PGPR has rarely been reported. This study reports the interaction between the halophyte Limonium sinense and its rhizosphere PGPR strain Bacillus flexus KLBMP 4941, as well as the mechanism by which KLBMP 4941 promotes host plant growth under salt stress. After salt stress treatment, we collected the root exudates (REs) of L. sinense and found that the REs could promote the growth and chemotaxis of the bacterium KLBMP 4941. In addition, the components of the REs under salt stress were analyzed, and some organic acids (2-methylbutyric acid, stearic acid, palmitic acid, palmitoleic acid, and oleic acid) were detected as the major components. Further assessment showed that each of these components had positive effects on the growth, motility, chemotaxis, and root colonization of strain KLBMP 4941. Further pot experiments revealed the potential PGP mechanisms induced by strain KLBMP 4941 on the host plant under salt stress. Inoculation with KLBMP 4941 promoted the accumulation of chlorophyll to enhance photosynthesis, increased osmotic regulator contents, enhanced flavonoid and antioxidant enzymes, and regulated Na+/K+ homeostasis to help the host ameliorate salinity stress damage. Our findings indicate that the halophyte L. sinense can attract and recruit beneficial rhizosphere bacteria by REs under salt stress, and the recruited B. flexus KLBMP 4941 elicited PGP effects under salinity stress through complex plant physiological regulatory mechanisms. This study provides a foundation for the enhancement of the rhizosphere colonization ability of the PGP strain KLBMP 4941, which shows potential applications in phytoremediation of saline soils. Environmental monitoring is important to the health management of an ecosystem. Biomarkers are particularly relevant because they are direct indicators of any toxic effects on organisms and are cheaper to use compared with chemical indicators, especially for extremely low-level organic contaminants. Fish can be significantly affected by pollutants, given their high trophic levels in aquatic food chains. Their immune function is closely related to their survival. The present study compared immune function-related parameters of wild mullet (Liza haematocheila) samples from low (Jinzhou) and high (Yingkou) polluted sites during the pre-winter (PW) and pre-breeding (PB) periods in Liaodong Bay, to evaluate the effect of water pollution on fish health and to explore potential biomarkers of coast water pollution. Compared with Jinzhou mullet, there was a significantly higher level of hematocrit in Yingkou mullet, but a significantly lower serum lysozyme level (P  0.05). Splenic MMC number was significantly higher in individual Yingkou L. haematochila with abnormal livers compared with normal Yingkou L. haematochila during both sampling periods. The splenic MMC area in abnormal livers was approximately four times those of normal individuals during PB in Yingkou L. haematochila. The number of splenic melanomacrophages (MM) in abnormal livers was approximately nine times those of the normal livers during PW. There were also differences in pigments in normal Yingkou individuals compared with normal Jinzhou samples during PW (melanin 29.4% higher and hemosiderin 8.3% higher). Based on these results, we suggest that serum lysozyme activity, splenic MM number and MMC (both number and area), and melanin of local fish have potential as sensitive biomarkers for the assessment of coastal water pollution.