Hepatic fibrosis is the wound healing response upon the liver tissue damage caused by multiple stimuli. Targeting activated hepatic stellate cells (HSCs), the major extracellular matrix (ECM)-producing cells within the damaged liver, has been regarded as one of the main treatments for hepatic fibrosis. In the present study, we performed preliminary bioinformatics analysis attempting to identify possible factors related to hepatic fibrosis and found that lncRNA G protein-coupled receptor 137B (Gpr137b-ps) and C-X-C motif chemokine ligand 14 (CXCL14) showed to be markedly upregulated within carbon tetrachloride (CCl4)-caused hepatic fibrotic mice tissue samples and activated HSCs. CXCL14 The silencing of lncRNA Gpr137b-ps or CXCL14 alone could significantly improve CCl4-induced fibrotic changes in mice liver in vivo and collagen I and III release by HSCs and HSC proliferation in vitro. miR-200a-3p directly targeted lncRNA Gpr137b-ps and CXCL14, respectively. LncRNA Gpr137b-ps relieved miR-200a-3p-induced inhibition on CXCL14 expression via acting as a ceRNA. In HSCs, the effects of lncRNA Gpr137b-ps silencing on collagen I and III release by HSCs and HSC proliferation were significantly reversed by miR-200a-3p inhibition, and the effects of miR-200a-3p inhibition were reversed by CXCL14 silencing. In conclusion, we demonstrated a lncRNA Gpr137b-ps/miR-200a-3p/CXCL14 axis that modulates HSC activation and might exert an effect on the pathogenesis of liver fibrosis.Neurodegenerative disorders are characterized by progressive loss of neurons. To date, no efficacious therapies exist for these disorders, and current therapies provide only symptomatic relief. The neuroprotective effects of natural compounds have been reported in several neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) amyotrophic lateral sclerosis (ALS), cerebral ischemia and brain tumors. Flavonoids are the most widely studied natural products for the prevention and treatment of neurodegenerative disorders. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) represents a complex gene regulated cytoprotective pathway. Several natural compounds have been identified as Nrf2 regulators in various chronic disorders, including carcinogenic, liver ailments, inflammatory conditions, neurodegeneration, diabetes and cardiotoxicities. The current review focuses on Nrf2 targeting by flavonoids in the prevention and treatment of neurodegenerative disorders, addressing the most contemporary information available on this timely subject.Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.We previously reported that vestigial-like 1 (VGLL1), a cofactor of transcriptional enhanced associate domain 4 (TEAD4), is transcriptionally regulated by PI3K and β-catenin signaling and is involved in gastric cancer malignancy. However, the precise mechanism underlying the regulation of VGLL1 activation remains unknown. Therefore, we aimed to investigate the molecular mechanism underlying the transforming growth factor-β (TGF-β)-mediated activation of VGLL1 and the VGLL1-TEAD4 interaction in gastric cancer cells. https://www.selleckchem.com/products/AP24534.html We showed that TGF-β enhanced VGLL1 phosphorylation and that this phosphorylated VGLL1 functioned as a transcription cofactor of TEAD4 in NUGC3 cells. TGF-β also increased the phosphorylation of ERK and ribosomal S6 kinase 2 (RSK2) in NUGC3 cells, thereby triggering the translocation of phosphorylated RSK2 to the nucleus. Site-directed mutagenesis and immunoprecipitation experiments revealed that RSK2 phosphorylated VGLL1 at S84 in the presence of TGF-β. Mutation of VGLL1 at S84 suppressed VGLL1-TEAD4 binding and the subsequent transcriptional activation of matrix metalloprotease 9 (MMP9). Moreover, VGLL1 peptide containing S84 suppressed the TGF-β-induced MMP9 expression and reduced the invasion and proliferation of gastric cancer cells, whereas VGLL1 peptide containing S84A did not. Furthermore, suppression of expression or activation of VGLL1 enhances the therapeutic effects of lapatinib. Collectively, these results indicate that VGLL1 phosphorylation via TGF-β/ERK/RSK2 signaling plays a crucial role in MMP9-mediated malignancy of gastric cancer. In addition, our study highlights the therapeutic potential of the peptide containing VGLL1 S84 for the treatment of gastric cancer.Endothelin-1 (ET-1), an endogenous vasoconstrictor, has been known as a pro-nociceptive agent involved in multitude of pain. ET-1 acts on endothelin receptors on vascular endothelial cells, sensitizes release of ATP, which then acts on P2X3 receptors on nociceptors and results in mechanical hyperalgesia. Both endothelin receptors and P2X3 receptors are present in primary sensory neuron, where it remains unclear whether there is an interaction between them. Herein, we reported that ET-1 potentiated the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. ET-1 concentration-dependently increased α,β-methylene-ATP (α,β-meATP)-evoked inward currents, which were mediated by P2X3 receptors. ET-1 shifted the α,β-meATP concentration-response curve upwards, with an increase of 34.38 ± 4.72% in the maximal current response to α,β-meATP in the presence of ET-1. ET-1 potentiation of α,β-meATP-evoked currents was voltage-independent. ET-1 potentiated P2X3 receptor-mediated currents through endothelin-A receptors (ETAR), but not endothelin-B receptors (ETBR).