https://www.selleckchem.com/products/itd-1.html Moreover, immunohistochemical analysis demonstrated Ca-GG+IL-4 hydrogel bead could promote M2 macrophage polarization and reduce cell apoptosis in vivo. In addition, micro-CT and immunohistochemical analysis at 12weeks post-surgery showed that Ca-GG+IL-4 hydrogel bead could achieve superior bone defect repair efficacy in vivo. The Ca-GG+IL-4 hydrogel bead effectively promoted bone defect regeneration via regulating macrophage polarization, reducing cell apoptosis and promoting BMSCs osteogenesis through TGF-β1/Smad pathway. Therefore, it is a promising strategy for repair of bone defect. The Ca-GG + IL-4 hydrogel bead effectively promoted bone defect regeneration via regulating macrophage polarization, reducing cell apoptosis and promoting BMSCs osteogenesis through TGF-β1/Smad pathway. Therefore, it is a promising strategy for repair of bone defect.Increasing maternal age in mammals is associated with poorer oocyte quality, involving higher aneuploidy rates and decreased developmental competence. Prior to resumption of meiosis, fully developed mammalian oocytes become transcriptionally silent until the onset of zygotic genome activation. Therefore, meiotic progression and early embryogenesis are driven largely by translational utilization of previously synthesized mRNAs. We report that genome-wide translatome profiling reveals considerable numbers of transcripts that are differentially translated in oocytes obtained from aged compared to young females. Additionally, we show that a number of aberrantly translated mRNAs in oocytes from aged females are associated with cell cycle. Indeed, we demonstrate that four specific maternal age-related transcripts (Sgk1, Castor1, Aire and Eg5) with differential translation rates encode factors that are associated with the newly forming meiotic spindle. Moreover, we report substantial defects in chromosome alignment and cytokinesis in the oocytes of young females, in which candidat