younger participants, with younger age at initiation of active therapy an important predictor of success. Diagnosis of esophageal cancer or precursor lesions by endoscopic imaging depends on endoscopist expertise and is inevitably subject to interobserver variability. Studies on computer-aided diagnosis (CAD) using deep learning or machine learning are on the increase. However, studies with small sample sizes are limited by inadequate statistical strength. Here, we used a meta-analysis to evaluate the diagnostic test accuracy (DTA) of CAD algorithms of esophageal cancers or neoplasms using endoscopic images. Core databases were searched for studies based on endoscopic imaging using CAD algorithms for the diagnosis of esophageal cancer or neoplasms and presenting data on diagnostic performance, and a systematic review and DTA meta-analysis were performed. Overall, 21 and 19 studies were included in the systematic review and DTA meta-analysis, respectively. The pooled area under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD algorithms for the diagnosis of esophageal cancer or neoplasms in the image-based analysis were 0.97 (95% confidence interval [CI], 0.95-0.99), 0.94 (95% CI, 0.89-0.96), 0.88 (95% CI, 0.76-0.94), and 108 (95% CI, 43-273), respectively. Meta-regression showed no heterogeneity, and no publication bias was detected. The pooled area under the curve, sensitivity, specificity, and diagnostic odds ratio of CAD algorithms for the diagnosis of esophageal cancer invasion depth were 0.96 (95% CI, 0.86-0.99), 0.90 (95% CI, 0.88-0.92), 0.88 (95% CI, 0.83-0.91), and 138 (95% CI, 12-1569), respectively. CAD algorithms showed high accuracy for the automatic endoscopic diagnosis of esophageal cancer and neoplasms. The limitation of a lack in performance in external validation and clinical applications should be overcome. CAD algorithms showed high accuracy for the automatic endoscopic diagnosis of esophageal cancer and neoplasms. The limitation of a lack in performance in external validation and clinical applications should be overcome.Ca2+ serves as a ubiquitous second messenger mediating a variety of cellular processes including electrical excitation, contraction, gene expression, secretion, cell death and others. The identification of the molecular components of the mitochondrial Ca2+ influx and efflux pathways has created a resurgent interest in the regulation of mitochondrial Ca2+ balance and its physiological and pathophysiological roles. While the pace of discovery has quickened with the availability of new cellular and animal models, many fundamental questions remain to be answered regarding the regulation and functional impact of mitochondrial Ca2+ in health and disease. This review highlights several experimental observations pertaining to key aspects of mitochondrial Ca2+ homeostasis that remain enigmatic, particularly whether mitochondrial Ca2+ signaling is depressed or excessive in heart failure, which will determine the optimal approach to therapeutic intervention.The adult mammalian heart consists of mononuclear and binuclear cardiomyocytes (CMs) with various ploidies. However, it remains unclear whether a variation in ploidy or number of nuclei is associated with distinct functions and injury responses in CMs, including regeneration. Therefore, we investigated transcriptomes and cellular as well as nuclear features of mononucleated and binucleated CMs in adult mouse hearts with and without injury. To be able to identify the role of ploidy we analyzed control and failing human ventricular CMs because human CMs show a larger and disease-sensitive degree of polyploidization. Using transgenic Myh6-H2BmCh to identify mononucleated and binucleated mouse CMs, we found that cellular volume and RNA content were similar in both. On average nuclei of mononuclear CMs showed a 2-fold higher ploidy, as compared to binuclear CMs indicating that most mononuclear CMs are tetraploid. After myocardial infarction mononucleated and binucleated CMs in the border zone of the lesion responded with hypertrophy and corresponding changes in gene expression, as well as a low level of induction of cell cycle gene expression. Human CMs allowed us to study a wide range of polyploidy spanning from 2n to 16n. Notably, basal as well as pathological gene expression signatures and programs in failing CMs proved to be independent of ploidy. In summary, gene expression profiles were induced in proximity to injury, but independent of number of nuclei or ploidy levels in CMs.Constantly increasing attention to bioengineered proteins has led to the rapid development of new functional targets. Here we present the biophysical and functional characteristics of the newly designed CaM/AMBN-Ct fusion protein. The two-domain artificial target consists of calmodulin (CaM) and ameloblastin C-terminus (AMBN-Ct). CaM as a well-characterized calcium ions (Ca2+) binding protein offers plenty of options in terms of Ca2+ detection in biomedicine and biotechnologies. Highly negatively charged AMBN-Ct belongs to intrinsically disordered proteins (IDPs). CaM/AMBN-Ct was designed to open new ways of communication synergies between the domains with potential functional improvement. The character and function of CaM/AMBN-Ct were explored by biophysical and molecular modelling methods. Experimental studies have revealed increased stability and preserved CaM/AMBN-Ct function. The results of molecular dynamic simulations (MDs) outlined different interface patterns between the domains with potential allosteric communication within the fusion.Effective treatment choices to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited because of the absence of effective target-based therapeutics. The main object of the current research was to estimate the antiviral activity of cannabinoids (CBDs) against the human coronavirus SARS-CoV-2. In the presented research work, we performed in silico and in vitro experiments to aid the sighting of lead CBDs for treating the viral infections of SARS-CoV-2. Virtual screening was carried out for interactions between 32 CBDs and the SARS-CoV-2 Mpro enzyme. Afterward, in vitro antiviral activity was carried out of five CBDs molecules against SARS-CoV-2. https://www.selleckchem.com/ALK.html Interestingly, among them, two CBDs molecules namely Δ9 -tetrahydrocannabinol (IC50 = 10.25 μM) and cannabidiol (IC50 = 7.91 μM) were observed to be more potent antiviral molecules against SARS-CoV-2 compared to the reference drugs lopinavir, chloroquine, and remdesivir (IC50 ranges of 8.16-13.15 μM). These molecules were found to have stable conformations with the active binding pocket of the SARS-CoV-2 Mpro by molecular dynamic simulation and density functional theory.