The essential data for interior and thermal evolution models of the Earth and super-Earths are the density and melting of mantle silicate under extreme conditions. Here, we report an unprecedently high melting temperature of MgSiO3 at 500 GPa by direct shockwave loading of pre-synthesized dense MgSiO3 (bridgmanite) using the Z Pulsed Power Facility. We also present the first high-precision density data of crystalline MgSiO3 to 422 GPa and 7200 K and of silicate melt to 1254 GPa. The experimental density measurements support our density functional theory based molecular dynamics calculations, providing benchmarks for theoretical calculations under extreme conditions. The excellent agreement between experiment and theory provides a reliable reference density profile for super-Earth mantles. Furthermore, the observed upper bound of melting temperature, 9430 K at 500 GPa, provides a critical constraint on the accretion energy required to melt the mantle and the prospect of driving a dynamo in massive rocky planets.The HIV-1 envelope glycoprotein trimer is poorly immunogenic because it is covered by a dense glycan shield. As a result, recombinant Env glycoproteins generally elicit inadequate antibody levels that neutralize clinically relevant, neutralization-resistant (Tier-2) HIV-1 strains. Multivalent antigen presentation on nanoparticles is an established strategy to increase vaccine-driven immune responses. However, due to nanoparticle instability in vivo, the display of non-native Env structures, and the inaccessibility of many neutralizing antibody (NAb) epitopes, the effects of nanoparticle display are generally modest for Env trimers. Here, we generate two-component self-assembling protein nanoparticles presenting twenty SOSIP trimers of the clade C Tier-2 genotype 16055. https://www.selleckchem.com/products/shield-1.html We show in a rabbit immunization study that these nanoparticles induce 60-fold higher autologous Tier-2 NAb titers than the corresponding SOSIP trimers. Epitope mapping studies reveal that the presentation of 16055 SOSIP trimers on these nanoparticle focuses antibody responses to an immunodominant apical epitope. Thus, these nanoparticles are a promising platform to improve the immunogenicity of Env trimers with apex-proximate NAb epitopes.L1 retrotransposons can pose a threat to genome integrity. The host has evolved to restrict L1 replication. However, mechanisms underlying L1 propagation out of the host surveillance remains unclear. Here, we propose an evolutionary survival strategy of L1, which exploits RNA m6A modification. We discover that m6A 'writer' METTL3 facilitates L1 retrotransposition, whereas m6A 'eraser' ALKBH5 suppresses it. The essential m6A cluster that is located on L1 5' UTR serves as a docking site for eukaryotic initiation factor 3 (eIF3), enhances translational efficiency and promotes the formation of L1 ribonucleoprotein. Furthermore, through the comparative analysis of human- and primate-specific L1 lineages, we find that the most functional m6A motif-containing L1s have been positively selected and became a distinctive feature of evolutionarily young L1s. Thus, our findings demonstrate that L1 retrotransposons hijack the RNA m6A modification system for their successful replication.Human mobility is a primary driver of infectious disease spread. However, existing data is limited in availability, coverage, granularity, and timeliness. Data-driven forecasts of disease dynamics are crucial for decision-making by health officials and private citizens alike. In this work, we focus on a machine-learned anonymized mobility map (hereon referred to as AMM) aggregated over hundreds of millions of smartphones and evaluate its utility in forecasting epidemics. We factor AMM into a metapopulation model to retrospectively forecast influenza in the USA and Australia. We show that the AMM model performs on-par with those based on commuter surveys, which are sparsely available and expensive. We also compare it with gravity and radiation based models of mobility, and find that the radiation model's performance is quite similar to AMM and commuter flows. Additionally, we demonstrate our model's ability to predict disease spread even across state boundaries. Our work contributes towards developing timely infectious disease forecasting at a global scale using human mobility datasets expanding their applications in the area of infectious disease epidemiology.A correct use of inhaler devices is essential in chronic obstructive pulmonary disease (COPD) treatment. Critical errors were studied by analysing 659 video-recorded demonstrations of inhaler technique from 364 COPD patients using six different inhaler device models. The majority of the included patients used two (55%) or more (20%) device models. Overall, 66% of the patients made ≥1 critical error with at least one device model. The corresponding numbers for patients using 1, 2 and ≥3 device models were 43%, 70% and 86%, respectively. The only factor associated with making ≥1 critical error was simultaneous use of two (adjusted odds ratios (aOR) 3.17, 95% confidence interval (95% CI) 1.81, 5.64) or three or more (aOR 8.97, 95% CI 3.93, 22.1) device models. In conclusion, the proportion of patients making critical errors in inhaler technique was substantial, particularly in those using several different device models. To obtain optimal COPD treatment, it is important to assess a patient's inhaler technique and to minimise the number of inhaler device models.Among the many questions unanswered for the COVID-19 pandemic are the origin of SARS-CoV-2 and the potential role of intermediate animal host(s) in the early animal-to-human transmission. The discovery of RaTG13 bat coronavirus in China suggested a high probability of a bat origin. Here we report molecular and serological evidence of SARS-CoV-2 related coronaviruses (SC2r-CoVs) actively circulating in bats in Southeast Asia. Whole genome sequences were obtained from five independent bats (Rhinolophus acuminatus) in a Thai cave yielding a single isolate (named RacCS203) which is most related to the RmYN02 isolate found in Rhinolophus malayanus in Yunnan, China. SARS-CoV-2 neutralizing antibodies were also detected in bats of the same colony and in a pangolin at a wildlife checkpoint in Southern Thailand. Antisera raised against the receptor binding domain (RBD) of RmYN02 was able to cross-neutralize SARS-CoV-2 despite the fact that the RBD of RacCS203 or RmYN02 failed to bind ACE2. Although the origin of the virus remains unresolved, our study extended the geographic distribution of genetically diverse SC2r-CoVs from Japan and China to Thailand over a 4800-km range.