Aquaculture plays a pivotal role in covering dietary animal protein demands and restocking endangered fish populations. However, high mortality takes place at the earliest life stages prior and immediately after hatching. Improving growth and health parameters by immunostimulants is widely used in older fish, but rarely studied in larvae. Fulvic acids (FAs) are natural substances found in soil and water. Using zebrafish as a model organism, we evaluated the effects of exposure to a FA at concentrations ranging from 1 to 500 mg C/L (mg dissolved organic carbon per liter) on embryonic development. Furthermore, the concentration of reactive oxygen species (ROS) inside the larvae as well as the molecular mechanisms involved in growth, immune response, and antioxidative protection were determined at 5, 50, and 500 mg C/L. 20 to 200 mg C/L accelerated the hatching, which was mediated by increased expression of ifg-1, gh, and he1-α. Furthermore, lyz and mpx were significantly increased at 5 and 50 mg C/L. A concentration of 500 mg C/L induced genes involved in the protection against ROS (nrf-2, keap-1, cat, sod-1), increased the concentration of ROS inside the larvae and caused tissue damage and mortality. Interestingly, 50 mg C/L activated ROS protection as well (nrf-2, sod-2), while no increase of ROS was found in the larvae. Our results show, that FA at low to medium concentrations can increase the health of larvae, but becomes detrimental at higher concentrations.Ozonation is widely used during water treatment but can generate a variety of toxic disinfection byproducts, especially in the presence of bromide. In the present study, our halogen extraction code was extended and modified to identify bromine isotopic patterns and combined with the R package MFAssignR in selectively identifying brominated disinfection byproducts (Br-DBPs) from high resolution mass spectra. In total, 127 Br-DBPs formed from a Suwannee River natural organic matter (SRNOM) solution were successfully detected from tens of thousands of mass spectrometry peaks. Kendrick mass defect analysis and structural characterization identified 17 structures, 15 of which were identified as brominated carboxylic acids and firstly reported here. Computational model predictions indicated that these brominated carboxylic acids may possess high toxic potencies and raise valid concerns. The adapted halogen extraction code described in this study is a powerful tool for a wider application of analyzing Br-DBPs in complex water matrices and provides an effective technique to characterize and identify these compounds in future studies.Hydropower plant operating conditions are expected to change to be more in tandem with intermittent power production so as to meet the requirements of the Paris Agreement, which in turn may negatively impact ecological conditions downstream of the hydropower plants. https://www.selleckchem.com/products/740-y-p-pdgfr-740y-p.html The current study investigates how highly flexible hydropower operating conditions may impact several salmonid species (European grayling, Atlantic salmon and brown trout) in the River Umeälven, a major river in northern Sweden; specifically, how changes in hydropeaking frequency may affect the area of the downstream watercourse that is hydraulically suitable for spawning (potential spawning area) and how changes in spill gate closing time may affect the propensity to stranding. River hydrodynamics were modeled using the open-source solver Delft3D, with a range of hydropeaking frequencies (from 10 to 60 starts and stops per day) and a range of spill gate closing times from (1-30 min). Increasing the hydropeaking frequency caused a reduction in potential spawning area, but also a reduction in dewatering of potential spawning area at low flows. Increasing spill gate closing time caused a decrease in propensity to stranding. Effects were dependent on both species and life-stage, and declined longitudinally with distance downstream from the spillway outlet. The modelling approach used here provides an effective method for predicting likely outcomes of flexible hydropower operating conditions, taking into account fish species and life-stages present and watercourse characteristics.Bio-removal of negative charged platinum complex is of great challenge owing to electrostatic repulsions between PtCl62- and general extracellular polymeric substance (EPS) of microorganism. Galdieria sulphuraria (GS) are thermophilic and acidophilic microalga with specific metabolism, which subsequently lead to their unique cellular compositions such as EPS and phycocyanin, possibly providing a strategy to deal with negative charged metal complex. Accordingly, G. sulphuraria are employed to remove negative charged PtCl62- complex with initial concentrations ranging from 0, 10, 20, 30, to 45 ppm. The growth rates of G. sulphuraria with microalgae named as GS-0, GS-10, GS-20, GS-30, and GS-45, respectively, and simultaneously bio-removal efficiencies of PtCl62- are investigated. G. sulphuraria are independent to PtCl62- within 0-30 ppm, while they are inhibited within 45 ppm of PtCl62-. The PtCl62- removal efficiencies of GS-10, GS-20, and GS-30 increase from 94.58%, 95.52%, to 95.92%, while decrease to 71.81% of GS-45. About 92.39%, 93.77%, 94.29%, and 75.21% of PtCl62- adsorbed are accumulated within GS-10, GS-20, GS-30, GS-45, with few in EPS. The PtCl62- complexes accumulated in EPS and algae cells are possibly decomposed to PtCl4 according to the increasing zeta potentials of EPS and algae cells. The results indicate that PtCl62- is efficiently removed by G. sulphuraria, achieving bio-removal of negative charged PtCl62- complex from wastewater.The Himawari-8 aerosol algorithm was updated to version 3 (V30). However, no study has evaluated its performance. The purpose of this study is to verify and to compare version 2.1 (V21) and V30 aerosol products, to explain which factor dominates the aerosol optical depth (AOD) error, and to provide recommendations for aerosol product usage. The AOD accuracy of V30 was better than that of V21, with a higher correlation coefficient (R) and a higher expected error (EE_DT). The V30 AOD metrics (including R, EE_DT, and the root mean square error) exceeded those of V21 on more than 69% of the AERONET sites and its bias from MODIS AOD was smaller than that of V21 AOD. However, the V30 AOD does not meet the metric of EE_DT > 0.66. The analysis results suggest that aerosol type parameters (primarily the Ångström exponent (AE)) may be the dominant factor determining the AOD error. This reveals the direction of H8 algorithm improvement. More than 59% of the H8 AE value meets the expected error but they do not capture the variety (R 0.