https://www.selleckchem.com/products/opb-171775.html Cumulating evidence in Caucasian women suggests a positive association between height and premenopausal breast cancer risk and a negative association with overall adiposity; however data from Latin America are scarce. We investigated the associations between excess adiposity, body shape evolution across life, and risk of premenopausal breast cancer among 406 cases (women aged 20-45) and 406 matched population-based controls from Chile, Colombia, Costa Rica, and Mexico. Negative associations between adult adiposity and breast cancer risk were observed in adjusted models (body mass index (BMI) Odds ratio (OR) per 1 kg/m2 = 0.93; 95% confidence interval = 0.89-0.96; waist circumference (WC) OR per 10 cm = 0.81 (0.69-0.96); hip circumference (HC) OR per 10 cm = 0.80 (0.67-0.95)). Height and leg length were not associated with risk. In normal weight women (18.5 ≤ BMI  88 cm) had an increased risk compared to women with normal WC (OR = 3.60(1.47-8.79)). Residuals of WC over BMI showed positive associations when adjusted for BMI (OR per 10 cm = 1.38 (0.98-1.94)). Body shape at younger ages and body shape evolution were not associated with risk. No heterogeneity was observed by receptor status. In this population of Latin American premenopausal women, different fat distributions in adulthood were differentially associated with risk of breast cancer.DNA alkylation damage is repaired by base excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG). Despite its role in DNA repair, AAG-initiated BER promotes cytotoxicity in a process dependent on poly (ADP-ribose) polymerase-1 (PARP-1); a NAD+-consuming enzyme activated by strand break intermediates of the AAG-initiated repair process. Importantly, PARP-1 activation has been previously linked to impaired glycolysis and mitochondrial dysfunction. However, whether alkylation affects cellular metabolism in the absence of AAG-mediated BER initiation is unclear. To ad