Corticotropin-releasing hormone (CRH) has been implicated in multiple physiological processes, such as circadian rhythms, food intake and anxiety-like behavior. In telelost fishes, CRH is predominantly expressed in the caudal neurosecretory system (CNSS), a much low level in hypothalamus and gonads, while undetectable levels in other tissues. However, the mechanisms governing this tissue-specific expression remain unknown. In this study, firstly, we investigated the expression pattern of CRH mRNA in different tissues of olive flounder (Paralichthys olivaceus). Secondly, we found that flounder exhibited low locomotor activity in the daytime, concomitant with the highest CRH mRNA expression in CNSS at noon. Thirdly, we examined whether epigenetic mechanisms through DNA methylation are involved in tissue-specific expression of CRH mRNA. Promoter methylation of the CRH gene was assessed through bisulphate sequencing methods. In the proximal promoter, almost no methylation was detected in the muscle, hypothamus and CNSS. However, different methylation was detected in the distal promoter of CRH. The methylation was 63% in CNSS, while that in hypothalamus and muscle was 85% and 96%, respectively. Lastly, bioinformatics analysis revealed that a conserved AP-1 binding site (5-TCACTGA-3) was located in the proximal promoter of CRH gene. In vivo experiment, lipopolysaccharide (LPS) intraperitoneally injection in the flounder up-regulated c-Fos and CRH mRNA in CNSS (P less then 0.01). In CNSS tissue culture experiment, forskolin treatment significantly induced the expression of c-Fos, c-Jun and CRH mRNA (P less then 0.01). Collectively, our data provide the evidence that distal promoter methylation and c-Fos signal pathway are involved in transcriptional regulation of CRH expression in flounder.The complement C1r/C1s, Uegf, and Bmp1 (CUB) domains, which are most exclusively found in extracellular and plasma membrane-related proteins, are involved in various biological processes. https://www.selleckchem.com/products/ipi-549.html In this study, a CUB domain-containing protein (designed as HcCDCP) was cloned and characterized from freshwater pearl mussel (Hyriopsis cumingii). The 2280 bp complete cDNA of the HcCDCP contained a 1002 bp open reading frame, which encoded a protein with 333 amino acids. The predicted HcCDCP protein contained a typical CUB domain and a transmembrane region. The tissue distribution analysis indicated that the HcCDCP was detected in all tissues, and the highest expression was found in hepatopancreas followed by gills. After infection with bacteria (i.e., Staphylococcus aureus and Vibrio parahaemolyticus), virus (white spot syndrome virus) and virus analogs (poly[IC]), the mRNA level of the HcCDCP was significantly upregulated, suggesting that the HcCDCP might be involved in host immune defense response. The RNA interference revealed that the silencing of the HcCDCP could evidently inhibit the expression levels of lysozyme and tumor necrosis factor. Moreover, the recombinant protein of the CUB domain (rCUB) possessed binding capacity to eight different kinds of bacteria. The polysaccharide binding assay showed that the rCUB specifically bound to lipopolysaccharide, peptidoglycan, and D-mannose. This study provided valuable information for exploring the biological roles of CDCPs in the host defense system of mollusks.Clostridium argentinense produces botulinum neurotoxin type G (BoNT/G). We sequenced and analyzed the plasmid harboring the bont/G gene, designated pCAG, in C. argentinense strain 2740. The pCAG consisted of 140,070 bp containing the bont/G gene cluster. Although this gene cluster showed high similarities in its DNA sequence and ORF arrangement to those of other bont gene clusters, the other regions of the plasmid did not. A phylogenetic study suggested that pCAG had a unique evolutionary history compared with other clostridial bont-harboring plasmids. This suggests that pCAG is possibly a novel type of plasmid expressing the bont/G gene in C. argentinense.BCRP / ABCG2 is a key determinant of pharmacokinetics of substrate drugs. Several BCRP substrates and inhibitors are of low passive permeability, and the vesicular transport assay works well in this permeability space. Membranes were prepared from BCRP-HEK293, MCF-7/MX, and baculovirus-infected Sf9 cells with (BCRP-Sf9-HAM), and without (BCRP-Sf9) cholesterol loading. Km values for three substrates - estrone-3-sulfate, sulfasalazine, topotecan - correlated well between the four expression systems. In contrast, a 10-20-fold range in Vmax values was observed, with BCRP-HEK293 membranes possessing the largest dynamic range. IC50 values of the different test systems were similar to each other, with 94.4% of pairwise comparisons being within 3-fold. Substrate dependent inhibition showed somewhat greater variation, as 81.4% of IC50 values in the BCRP-HEK293 membranes were within 3-fold in pairwise comparisons. Overall, BCRP-HEK293 membranes demonstrated the highest activity. The IC50 values showed good concordance but substrate dependent inhibition was observed for some drugs.DNA Topoisomerases (Topos) are ubiquitous nuclear enzymes involved in regulating the topological state of DNA and, in eukaryotic organisms, Topos can be classified into two structurally and functionally different main classes TopoI and TopoII. Both these enzymes proved to be excellent targets of clinically significant classes of anticancer drugs. Actually, TopoI or II inhibitors show considerable wide spectrum antitumor activities, an important feature to be included in many chemotherapeutic protocols. Despite their clinical efficacy, the use of inhibitors targeting only one of the two enzymes can increase the levels of the other one, favouring the onset of unwanted phenomena such as drug resistance. Therefore, targeting both TopoI and TopoII can reduce the probability of developing resistance, as well as side effects thanks to the use of lower doses, given the synergistic effect of the dual activity. Moreover, since drug resistance is also due to DNA repair systems such as tyrosyl-DNA phosphodiesterases I and II, inhibiting Topoisomerases concomitantly to Tyrosyl-DNA phosphodiesterase enzymes could allow more efficient and safe drugs. This review represents an update of previous works reporting about dual TopoI and TopoII inhibitors, but also an overview of the new strategy regarding the development of derivatives able to simultaneously inhibit Topo and TDP enzymes, with particular attention to structure-affinity relationship studies. The newly collected derivatives are described focusing attention on their chemical structures and their biological profiles. The final aim is to highlight the structural requirements necessary for the development of potent multiple modulators of these targets, thus providing new potential antitumor agents for the clinical usage.