https://www.selleckchem.com/ Moreover, in vitro and vivo evaluations demonstrated that these new resulting collagen membranes had good cytocompatibility, biocompatibility, and degradability for potential applications in biomedicine. This work provides a new approach for collagen processing by liquid exfoliation with utility for the formation of robust collagen materials that consist of native collagen mesostructures as building blocks.With widespread applications of the latest neonicotinoid in agriculture, dinotefuran has gradually become a hazardous contaminant for plants through the generation of excessive reactive oxygen species. However, the potential toxic mechanisms of oxidative damages to plants induced by dinotefuran are still unknown. As a core component of the glutathione antioxidant enzyme system, glutathione peroxidases have been used as biomarkers to reflect excessive oxidative stress. In this study, the hazardous effects of dinotefuran on AtGPX6 were investigated at the molecular level. The intrinsic fluorescence intensity of AtGPX6 was quenched using the static quenching mechanism upon binding with dinotefuran. Moreover, a single binding site was predicted for AtGPX6 toward dinotefuran, and the complex formation was presumed to be driven by hydrogen bonds or van der Waals forces, which conformed with the molecular docking results. In addition, AtGPX6 exhibited moderate binding affinity with dinotefuran based on the bio-layer interferometry assay. In addition, the loosening and unfolding of the protein skeleton of AtGPX6 with the addition of dinotefuran were explored along with the increase of hydrophobicity around tryptophan residues. Lastly, the toxic effects of dinotefuran on the root growth of Arabidopsis seedlings were also examined. The exploration of the binding mechanism of dinotefuran with AtGPX6 at the molecular level would provide the toxicity assessment of dinotefuran on plants.Solid oxide cells (SOCs) are mutually convertible energy device