https://www.selleckchem.com/products/heparan-sulfate.html Background Malaria is among the leading causes of mortality and morbidity. Moreover, the emergence of resistance to antimalarial drugs is a major problem in controlling the disease. This makes the development of novel antimalarial drugs a necessity. Medicinal plants are important sources in discovering antimalarial drugs. Schinus molle is claimed for its antimalarial effect in Ethiopian folkloric medicine and endowed with in vitro antiplasmodial activity. In the present study, the in vivo antimalarial activity of the plant was investigated. Methods Acute toxicity was carried out using a standard procedure. To screen the in vivo antimalarial activity of the plant was investigated. S. molle against Plasmodium berghei (ANKA), a 4-day suppressive test was employed. The extracts and fractions were given to infected mice by oral gavage at 100, 200, and 400 mg/kg/day for four consecutive days. Parameters such as parasitemia were then evaluated. Results Any sign of toxicity was not observed in the oral acute toxicityyright © 2020 Getu Habte et al.This study aims to evaluate the anti-inflammatory, cytotoxicity, and genotoxicity activities of Dissotis multiflora (Sm) Triana and Paullinia pinnata Linn used traditionally in Cameroon to treat infectious diseases. Phytochemical screening was carried out using the LC-MS procedure. The ferrous oxidation-xylenol orange (FOX) assay was used to determine the 15-lipoxygenase (15-LOX) inhibitory activity of the plant samples. The tetrazolium-based colorimetric (MTT) assay was performed using Vero cells. The Ames test was carried out using Salmonella typhimurium TA98 and TA100 tester strains. LC-MS chromatogram of D. multiflora led to the identification of four known compounds, namely, 5-(3,5-dinitrophenyl)-2H-tetrazol (2), 2,2'-[2-(6-amino-9H-purine-9-yl)ethyl]iminodiethanol (14), 1,2,5-oxadiazolo [3,4-b]pyrazine, 5,6-di (3,5-dimethyl-1-piperidyl) (19), and nimbolinin D (20) whil