https://www.selleckchem.com/products/rg-7112.html The three dihydroxystilbenes also suppressed COX-2 expression in colon tumors (in vivo). The results obtained also revealed that the three dihydroxystilbenes inhibited PD-1 elevations in M2-THP-1 macrophages (in vitro). Therefore, the inhibition of AOM/DSS-induced colon carcinogenesis and colon tumor growth by 2,3-, 3,4-, and 4,4'-dihydroxystilbenes appears to be due to the suppression of M2 TAM differentiation and activation and PD-1 expression (immunosuppression) via reductions in COX-2 expression levels in the colon tumor microenvironment.Geniposide (GE) can effectively inhibit diabetic nephropathy (DN), but its mechanism is unclear. The objective of this study was to explore the antidiabetic nephropathy effects of GE both in high fat diet/streptozotocin-induced DN mice and in high glucose-induced podocyte model. Renal function in DN mice was evaluated by levels of serum creatinine (Scr) and blood urea nitrogen (BUN). Renal inflammation was appraised by pro-inflammatory cytokines Tumor necrosis factor α (TNF-α), Interleukin 6 (IL-6) and IL-1β via ELISA assay. Renal histopathology analysis was conducted via hematoxylin and eosin, Masson and periodic acid-silver metheramine staining. Cellular viability was measured by Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. Moreover, the related proteins p-NF-κB, ASC, Cleave-IL-1β, NLRP3, Cleave-Caspase-1 and GSDMD-N in AMPK/SIRT1/NF-κB pathway were assayed by Western blotting. In order to further investigate the effects of GE on podocytes, we also assessed these protein levels in AMPK/SIRT1/NF-κB pathway after siRNA-AMPK intervention by Western blotting. GE alleviated renal dysfunction as evidenced by decreased levels of Scr, BUN, TNF-α, IL-6 and IL-1β. Histological examination revealed GE effectively attenuated kidney damage, including glomerular basement membrane thickening and inflammatory cells infiltration. AMPK, p-AMPK and SIRT1 lev