With the outbreak of coronavirus, the number of patients who referred to the pain clinic for follow-up was much higher than before, which coincided with the onset of the coronavirus pandemic. However, due to incomplete knowledge regarding the virus and its effects, patients did not follow up to the pain. We present case of 8 patients who were treated previously for chronic pain (complete remission). During the pandemic, these patients were presented to our center presenting identical pain, that did not respond to the conservative therapy. Owing to the symptoms, these patients were screened and tested positive for COVID19. Two of the patients died whereas, symptoms were improved in other patients. Patients with the history of chronic pain may present relapse as a result of the infection or infection can trigger previous chronic pain among patients with risk factors. Patients with the history of chronic pain may present relapse as a result of the infection or infection can trigger previous chronic pain among patients with risk factors.The development of effective and safe vaccines is the ultimate way to efficiently stop the ongoing COVID-19 pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Built on the fact that SARS-CoV-2 utilizes the association of its Spike (S) protein with the human angiotensin-converting enzyme 2 (ACE2) receptor to invade host cells, we computationally redesigned the S protein sequence to improve its immunogenicity and antigenicity. Toward this purpose, we extended an evolutionary protein design algorithm, EvoDesign, to create thousands of stable S protein variants that perturb the core protein sequence but keep the surface conformation and B cell epitopes. The T cell epitope content and similarity scores of the perturbed sequences were calculated and evaluated. Out of 22,914 designs with favorable stability energy, 301 candidates contained at least two pre-existing immunity-related epitopes and had promising immunogenic potential. The benchmark tests showed that, although the epitope restraints were not included in the scoring function of EvoDesign, the top S protein design successfully recovered 31 out of the 32 major histocompatibility complex (MHC)-II T cell promiscuous epitopes in the native S protein, where two epitopes were present in all seven human coronaviruses. Moreover, the newly designed S protein introduced nine new MHC-II T cell promiscuous epitopes that do not exist in the wildtype SARS-CoV-2. These results demonstrated a new and effective avenue to enhance a target protein's immunogenicity using rational protein design, which could be applied for new vaccine design against COVID-19 and other pathogens.The COVID-19, caused by a novel coronavirus, was declared as a global pandemic by WHO more than five months ago, and we are still experiencing a state of global emergency. More than 74.30 million confirmed cases of the COVID-19 have been reported globally so far, with an average fatality rate of almost 3.0%. Seven different types of coronaviruses had been detected from humans; three of them have resulted in severe outbreaks, i.e., MERS-CoV, SARS-CoV, and SARS-CoV-2. Phylogenetic analysis of the genomes suggests that the possible occurrence of recombination between SARS-like-CoVs from pangolin and bat might have led to the origin of SARS-CoV-2 and the COVID-19 outbreak. Coronaviruses are positive-sense, single-stranded RNA viruses and harbour a genome (30 kb) consisting of two terminal untranslated regions and twelve putative functional open reading frames (ORFs), encoding for non-structural and structural proteins. There are sixteen putative non-structural proteins, including proteases, RNA-dependent RNA polymerase, helicase, other proteins involved in the transcription and replication of SARS-CoV-2, and four structural proteins, including spike protein (S), envelope (E), membrane (M), and nucleocapsid (N). SARS-CoV-2 infection, with a heavy viral load in the body, destroys the human lungs through cytokine storm, especially in elderly persons and people with immunosuppressed disorders. A number of drugs have been repurposed and employed, but still, no specific antiviral medicine has been approved by the FDA to treat this disease. This review provides a current status of the COVID-19, epidemiology, an overview of phylogeny, mode of action, diagnosis, and possible treatment methods and vaccines.This study aimed to share our experiences during the coronavirus disease 2019 (COVID-19) pandemic obtained in diagnostic radiology facilities of five Training Research Hospitals in the Asian part of Istanbul (North Hospitals). Accordingly, we reported the utilised examination details, allocation of radiology staff and actions and safety procedures for patients and radiology staff. As the corporate radiology team serving in these designated pandemic hospitals, examination details and safety procedures of some diagnostic radiology facilities among five training research hospitals have been identified in the current study. Our guidelines and preparedness protocol aimed to reduce patient morbidity and infection-related mortality through quick and proper diagnosis to prevent the spread of COVID-19 to our employees, patients and the general public during the COVID-19 pandemic. https://www.selleckchem.com/products/Nolvadex.html Results showed that teamwork is a key factor while providing medical services. In addition, continuous communication efforts and individual responsibilities of radiology staff were remarkable during the COVID-19 pandemic. The recent situation also showed that co-operation of radiology facilities with device manufacturers and applicators are quite significant especially for development of special protocols in the frame of As Low As Reasonably Achievable. The COVID-19 pandemic has tackled several challenges in radiology among radiology departments. Therefore, continuous co-operation plans and motivational actions are highly recommended not only between radiology staff but also between radiology stakeholders and service providers in the future. Technical details of recent investigation can provide useful information about the management of diagnostic radiology departments during the fight with the COVID-19 pandemic in cities with high population density such as Istanbul.