We use random matrix theory (RMT) to investigate the statistical properties of brain functional networks in lower limb motor imagery. Functional connectivity was calculated by Pearson correlation coefficient (PCC), mutual information (MTI) and phase locking value (PLV) extracted from EEG signals. We found that when the measured subjects imagined the movements of their lower limbs the spectral density as well as the level spacings displayed deviations from the random matrix prediction. In particular, a significant difference between the left and right foot imaginary movements was observed in the maximum eigenvalue from the PCC, which can provide a theoretical basis for further study on the classification of unilateral movement of lower limbs.Electroencephalogram (EEG) signals are important to study the activities of human brains. The independent component analysis (ICA) algorithm is a practical blind source separation (BSS) technique that can separate EEG sources from artifacts effectively. However, most traditional ICA algorithms assume that the mixing process is instantaneous and off-line. In this paper, a novel framework based on the extension of the online recursive ICA algorithm (ORICA) is proposed to apply for motor imagery (MI) EEG recording. The contributions are as follows. Firstly, we show ORICA's adaptability to accurate and effective source separation used for artifact-contaminated MI EEG recording. Secondly, to identify EOG signals on the output of source separation, the topographic map is presented to distinguish the target signals. The experimental results show that the proposed framework is able to be applied to process MI EEG recording in real-time situations.The electroencephalogram (EEG) records a summed mixture of multiple sources of neural activity distributed throughout the brain. Source separation methods aim to un-mix the EEG in order to recover activity generated by the original sources. However, most current state-of-the-art source separation methods do not take into account the physical locations of sources of EEG activity.We present a new source separation method which uses an accurate model of the head to un-mix the EEG into individual sources based on their physical locations.We apply our method to an EEG dataset recorded during motor imagery and show that it is able to identify sources that are located in distinct physical regions of the brain. We compare our method to independent component analysis and show that our sources have higher spatial specificity and, furthermore, allow higher classification accuracies (a mean improvement in accuracy of 8.6% was achieved p =0.039).Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder after Alzheimer's disease, associated, among others, with motor symptoms such as resting tremor, rigidity and bradykinesia. At the same time, early diagnosis of PD is hindered by a high misdiagnosis rate and the subjective nature of the diagnosis process itself. Recent developments in mobile and wearable devices, such as smartphones and smartwatches, have allowed the automated detection and objective measurement of PD symptoms. In this paper we investigate the hypothesis that PD motor symptom degradation can be assessed by studying the in-meal behavior and modeling the food intake process. To achieve this, we use the inertial data from a commercial smartwatch to investigate the in-meal eating behavior of healthy controls and PD patients. In addition, we define and provide a methodology for calculating Plate-to-Mouth (PtM), an indicator that relates with the average time that the hand spends transferring food from the plate towards the mouth during the course of a meal. The presented experimental results, using our collected dataset of 28 participants (7 healthy controls and 21 PD patients), support our hypothesis. Results initially point out that PD patients have a higher PtM value than the healthy controls. Finally, using PtM we achieve a precision/recall/F1 of 0.882/0.714/0.789 towards classifying the meals from the PD patients and healthy controls.Respiratory rate (RR) is one of the vital signs which is commonly measured by contact-based methods, such as using a breathing belt. Recently, significant research has been conducted related to contactless RR monitoring - however, the majority of experiments are performed in situations when the subject is oriented towards the radar. In this research, we are interested in monitoring the breathing of subjects who can be anywhere in the room. A system of three impulse radio ultrawideband (IR-UWB) radars is used to cover the whole room. A Kinect camera that can track subjects' joints 3D coordinates was employed to localize the subjects. The results of RR monitoring using IR-UWB radars and Kinect camera show good performance in single/multiple subject(s) tracking and RR estimation.Utilizing Impulse Radio Ultra-WideBand (IR-UWB) radar for vital sign monitoring has attracted growing interest due to the noncontact measurement without privacy concerns. Most of existing researches assume that the subject's chest is directed to the radar antenna, to ensure the strength of backscattered signals from chest movement. However, a large angle between the antenna and the subject's chest caused by the body orientation badly affects the monitoring accuracy. Multiple observations of the same cardiopulmonary activity from different orientations provide more available measurements. This paper addresses the challenge by using an IR-UWB radar network instead of a single radar. https://www.selleckchem.com/products/purmorphamine.html Three IR-UWB radars are placed as endpoints of an equilateral triangle to collect vital sign information of a subject sitting at the center. A Conditional Generative Adversarial Network (CGAN) method is proposed to fuse multisensory data. First, the body orientation is classified by combining signal features and a random forest classifier. Then the impact of different angles on vital sign monitoring results is discussed and validated in each orientation. The data fusion process is modelled as an extended generative network with orientation based condition to produce the enhanced vital signal. This signal is optimized with the discriminator network to a fitted sinusoidal wave with heartbeat and respiratory information. Experimental results on measuring Heartbeat Rate (HR) in different orientations reveal the effectiveness and stability of the proposed method.