https://www.selleckchem.com/products/bay-11-7082-bay-11-7821.html Aging is the largest risk factor in many diseases and mortality alike. As the elderly population is expected to increase at an accelerating rate in the future, these phenomena will pose a growing socio-economic burden on societies. To successfully cope with this challenge, a deeper understanding of aging is crucial. In many aspects, the companion dog is an increasingly popular model organism to study aging, with the promise of producing results that are more applicable to humans than the findings that come from the studies of classical model organisms. In this preliminary study we used the whole-genome sequence of two extremely old dogs - age 22 and 27 years (or 90-135% more, than the average lifespan of dogs) - in order to make the first steps to understand the genetic background of extreme longevity in dogs. We identified more than ∼80 1000 novel SNPs in the two dogs (7500 of which overlapped between them) when compared to three publicly available canine SNP databases, which included SNP information from850resented preliminary results highlight the utility of the companion dog in the study of the genetic background of longevity and aging. Copyright © 2020 Jónás, Sándor, Tátrai, Egyed and Kubinyi.Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community s