In this regime, greater mutual information resulted in a disproportionate increase in redundancy relative to information transmission. These results indicate that the emergence of synergistic processing from correlated activity differs according to timescale and correlation regime. In a low-correlation regime, synergistic processing increases with greater correlation, and in a high-correlation regime, synergistic processing decreases with greater correlation.Concurrent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) bridge brain connectivity across timescales. During concurrent EEG-fMRI resting-state recordings, whole-brain functional connectivity (FC) strength is spatially correlated across modalities. However, cross-modal investigations have commonly remained correlational, and joint analysis of EEG-fMRI connectivity is largely unexplored. Here we investigated if there exist (spatially) independent FC networks linked between modalities. We applied the recently proposed hybrid connectivity independent component analysis (connICA) framework to two concurrent EEG-fMRI resting-state datasets (total 40 subjects). Two robust components were found across both datasets. The first component has a uniformly distributed EEG frequency fingerprint linked mainly to intrinsic connectivity networks (ICNs) in both modalities. Conversely, the second component is sensitive to different EEG frequencies and is primarily linked to intra-ICN connectivity in fMRI but to inter-ICN connectivity in EEG. The first hybrid component suggests that connectivity dynamics within well-known ICNs span timescales, from millisecond range in all canonical frequencies of FCEEG to second range of FCfMRI. Conversely, the second component additionally exposes linked but spatially divergent neuronal processing at the two timescales. This work reveals the existence of joint spatially independent components, suggesting that parts of resting-state connectivity are co-expressed in a linked manner across EEG and fMRI over individuals.Ongoing thought patterns constitute important aspects of both healthy and abnormal human cognition. However, the neural mechanisms behind these daily experiences and their contribution to well-being remain a matter of debate. Here, using resting-state fMRI and retrospective thought sampling in a large neurotypical cohort (n = 211), we identified two distinct patterns of thought, broadly describing the participants' current concerns and future plans, that significantly explained variability in the individual functional connectomes. Consistent with the view that ongoing thoughts are an emergent property of multiple neural systems, network-based analysis highlighted the central importance of both unimodal and transmodal cortices in the generation of these experiences. Importantly, while state-dependent current concerns predicted better psychological health, mediating the effect of functional connectomes, trait-level future plans were related to better social health, yet with no mediatory influence. Collectively, we show that ongoing thoughts can influence the link between brain physiology and well-being.An overarching goal of neuroscience research is to understand how heterogeneous neuronal ensembles cohere into networks of coordinated activity to support cognition. To investigate how local activity harmonizes with global signals, we measured electroencephalography (EEG) while single pulses of transcranial magnetic stimulation (TMS) perturbed occipital and parietal cortices. We estimate the rapid network reconfigurations in dynamic network communities within specific frequency bands of the EEG, and characterize two distinct features of network reconfiguration, flexibility and allegiance, among spatially distributed neural sources following TMS. Using distance from the stimulation site to infer local and global effects, we find that alpha activity (8-12 Hz) reflects concurrent local and global effects on network dynamics. Pairwise allegiance of brain regions to communities on average increased near the stimulation site, whereas TMS-induced changes to flexibility were generally invariant to distance and stimulation site. In contrast, communities within the beta (13-20 Hz) band demonstrated a high level of spatial specificity, particularly within a cluster comprising paracentral areas. Together, these results suggest that focal magnetic neurostimulation to distinct cortical sites can help identify both local and global effects on brain network dynamics, and highlight fundamental differences in the manifestation of network reconfigurations within alpha and beta frequency bands.While numerous studies of ephaptic interactions have focused on either axons of peripheral nerves or on cortical structures, no attention has been given to the possibility of ephaptic interactions in white matter tracts. Inspired by the highly organized, tightly packed geometry of axons in fiber pathways, we aim to investigate the potential effects of ephaptic interactions along these structures that are resilient to experimental probing. We use axonal cable theory to derive a minimal model of a sheet of N ephaptically coupled axons. Numerical solutions of the proposed model are explored as ephaptic coupling is varied. We demonstrate that ephaptic interactions can lead to local phase locking between adjacent traveling impulses and that, as coupling is increased, traveling impulses trigger new impulses along adjacent axons, resulting in finite size traveling fronts. For strong enough coupling, impulses propagate laterally and backwards, resulting in complex spatiotemporal patterns. While common large-scale brain network models often model fiber pathways as simple relays of signals between different brain regions, our work calls for a closer reexamination of the validity of such a view. The results suggest that in the presence of significant ephaptic interactions, the brain fiber tracts can act as a dynamic active medium.The complexity of brain activity has been observed at many spatial scales and has been proposed to differentiate between mental states and disorders. https://www.selleckchem.com/products/bexotegrast.html Here we introduced a new measure of (global) network complexity, constructed as the sum of the complexities of its nodes (i.e., local complexity). The complexity of each node is obtained by comparing the sample entropy of the time series generated by the movement of a random walker on the network resulting from removing the node and its connections, with the sample entropy of the time series obtained from a regular lattice (ordered state) and a random network (disordered state). We studied the complexity of fMRI-based resting-state networks. We found that positively correlated (pos) networks comprising only the positive functional connections have higher complexity than anticorrelation (neg) networks (comprising the negative connections) and the network consisting of the absolute value of all connections (abs). We also observed a significant correlation between complexity and the strength of functional connectivity in the pos network.