Serologic testing for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in potential donors of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) may not be performed until after blood donation. A hospital-based recruitment program for CCP may be an efficient way to identify potential donors prospectively. Patients who recovered from known or suspected COVID-19 were identified and recruited through medical record searches and public appeals in March and April 2020. Participants were screened with a modified donor history questionnaire and, if eligible, were asked for consent and tested for SARS-CoV-2 antibodies (IgG and IgM). Participants positive for SARS-CoV-2 IgG were referred for CCP collection. Of 179 patients screened, 128 completed serologic testing and 89 were referred for CCP donation. IgG antibodies to SARS-CoV-2 were detected in 23 of 51 participants with suspected COVID-19 and 66 of 77 participants with self-reported COVID-19 confirmed by polymerase chain reaction (PCR). The anti-SARS-CoV-2 IgG level met the US Food and Drug Administration criteria for "high-titer" CCP in 39% of participants confirmed by PCR, as measured by the Ortho VITROS IgG assay. A wide range of SARS-CoV-2 IgG levels were observed. A hospital-based CCP donor recruitment program can prospectively identify potential CCP donors. Variability in SARS-CoV-2 IgG levels has implications for the selection of CCP units for transfusion. A hospital-based CCP donor recruitment program can prospectively identify potential CCP donors. Variability in SARS-CoV-2 IgG levels has implications for the selection of CCP units for transfusion. Pool testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) preserves testing resources at the risk of missing specimens through specimen dilution. To determine whether SARS-CoV-2 specimens would be missed after 101 pooling, we identified 10 specimens with midrange (ie, 25-34 cycles) and 10 with late (ie, >34-45 cycles) crossing threshold (Ct) values and tested these both neat and after 101 pooling. Final test results and Ct changes were compared. Overall, 17 of 20 specimens that contained SARS-CoV-2 were detected after 101 pooling with the Xpert Xpress SARS-CoV-2 Assay (Cepheid), rendering an 85% positive percentage of agreement. All 10 of 10 specimens with an undiluted Ct in the mid-Ct range were detected after 101 pooling, in contrast to 7 of 10 with an undiluted Ct in the late-Ct range. The overall Ct difference between the neat testing and the 101 pool was 2.9 cycles for the N2 gene target and 3 cycles for the E gene target. The N2 gene reaction was more sensitive than the E gene reaction, detecting 16 of 20 positive specimens after 101 pooling compared with 9 of 20 specimens. An 85% positive percentage of agreement was achieved, with only specimens with low viral loads being missed following 101 pooling. The average impact on both reverse transcription polymerase chain reactions within this assay was about 3 cycles. An 85% positive percentage of agreement was achieved, with only specimens with low viral loads being missed following 101 pooling. The average impact on both reverse transcription polymerase chain reactions within this assay was about 3 cycles.Aphis gossypii Glover (Hemiptera Aphididae) is a polyphagous species frequently associated with the presence of sooty mold and viruses lethal to plants. The purpose of this work was to characterize possible resistance categories of cotton genotypes against A. gossypii. Initially, a preliminary test was carried out with 78 genotypes, 15 of which were selected for infestation ability assays and the determination of the cumulative aphid-day rates. Posteriorly, these genotypes were also evaluated through antixenosis and antibiosis assays. The genotypes FM 910, FM 966 LL, Mocó, Gossypium hirsutum var. punctatum L. (Malvaceae), Variedade Reba = BTK-12, Deltapine, Hi-Bred, Acala 4-42, IAC PV010-1664, IAC 21, Reba B-50 PR and FMT 709 inhibited the aphid colonization. In the infestation ability assay, G. hirsutum punctatum, IAC PV010-1664 and Acala 4-42 were the least infested. In a multiple-choice assay, Deltapine Smooth Leaf and Variedade Reba = BTK-12 were significantly less infested, suggesting antixenosis. In the antibiosis assay, Gossypium arboreum L. (Malvaceae) 1 showed the lowest number of nymphs, number of nymphs per adult per day and, number of nymphs at 10 d after the birth of the first nymph in addition to reducing the reproductive period, nymphal survival, adult longevity and, developmental time. In the FM 910, the number of nymphs produced per day and, at 10 d after the birth of the first nymph decreased, which also indicated resistance. The results obtained here are unprecedented and can be explored in breeding programs to develop insect-resistant cotton cultivars.The meadow spittlebug, Philaenus spumarius (Linnaeus) (Hemiptera Aphrophoridae), is a vector of the plant pathogen Xylella fastidiosa; however, its role in recent outbreaks of Pierce's disease of grapevine (PD) in California is unclear. While the phenology and ecology of P. spumarius can help determine its contributions to PD epidemics, both remain poorly described in the North Coast vineyards of California. We assessed the phenology of P. spumarius in the region. Spittlemasses were first observed in February or March, while the emergence of adult spittlebugs did not occur until April or May depending on the year. Analysis of sweep and trap data from 2016 to 2018 revealed significant effects of survey month, vineyard site, and year on adult abundance in sweep and trap surveys. Spittlebug adults were present in the vineyards from April until December, with the greatest number of adults by sweep net in May or June, whereas adults on traps peaked between July and November. Analysis of natural infectivity in groups of field-collected spittlebug adults showed significant difference in transmission rates among months. Spittlebugs successfully transmitted Xylella fastidiosa (Wells) (Xanthomonadales Xanthomonadaceae) to potted grapevines between July and December. The greatest risk of X. fastidiosa transmission by P. spumarius was in December (60%) followed by October (30%). However, the infectivity patterns of the meadow spittlebug did not align with the historical paradigm of California North Coast PD. https://www.selleckchem.com/products/Camptothecine.html We discuss alternative hypotheses in which P. spumarius could play a role in the epidemiology of this disease.