Three Cu(II) coordination compounds with 4-methyl imidazole were obtained, such as [Cu(C4H6N2)4(NO3)2], [Cu(C4H6N2)4Br2], and [Cu(C4H6N2)4Cl2]. Crystallographic studies confirmed their structural similarity with Cu(II) in the active site of endogenous copper-zinc superoxide dismutase (CuZn-SOD). The superoxide anion radical (O2•-) scavenging activity was evaluated by the non-enzymatic experimental assay and followed the trend [Cu(C4H6N2)4(NO3)2] > [Cu(C4H6N2)4Br2] > [Cu(C4H6N2)4Cl2]. The density functional theory and the hard and soft acids and bases principle showed the importance of the electron-deficient character of Cu(II) in the chemical reactivity of the coordination compounds; Cu(II) is the softest site in the molecule and it is preferred for the nucleophilic and radical attacks of the soft O2•-. A simple rule was obtained "the electron-deficient character of Cu(II) is the key index for the O2•- scavenging activity and is modulated by the electron-releasing counteranion effect on the coordination compound".Peptides are attractive drug candidates, but their utility is greatly limited by their inherent susceptibility to proteolytic degradation and their inability to pass through the cell membrane. Here, we employ a strategy of temporary cyclization to develop a cell-active lysine-specific demethylase 1 (LSD1/KDM1A) inhibitor peptide. We first identified a highly potent LSD1-inhibitory linear peptide, with the assistance of X-ray crystal structure data of inhibitor peptide-bound LSD1·CoREST. The peptide was converted to a redox-activatable cyclic peptide incorporating cell-penetrating peptide (CPP), expecting selective activation under intracellular reducing conditions. The cyclic peptide moiety exhibited enhanced stability to protease and was converted to the linear, unmodified LSD1 inhibitor peptide under reducing conditions. The cyclic peptide with CPP inhibited the proliferation of human acute myeloid leukemia cells (HL-60) in the low micromolar concentration range.In the troposphere, the knowledge about nitrous acid (HONO) sources is incomplete. The missing source of sulfate and fine particles cannot be explained during haze events. Air quality models cannot predict high levels of secondary fine-particle pollution. Despite extensive studies, one challenging issue in atmospheric chemistry is identifying the source of HONO. Here, we present direct ab initio molecular dynamics simulation evidence and typical air pollution events of the formation of gaseous HONO, nitrogen dioxide/hydrogen sulfite (HOS(O)2-NO2 or NO2-HSO3) from nitrogen dioxide (NO2), sulfur dioxide (SO2), water (H2O), and ammonia (NH3) molecules in a proportion of 2133. The reactions show a new mechanism for the formation of HONO and NO2-HSO3 in the troposphere, especially when the concentration of NO2, SO2, H2O, and NH3 is high (e.g., 2133 or higher) in the air. Contrary to the proportion NO2, SO2, H2O, and NH3 equaling to 1131 and 1132, the proportion (2133) enables barrierless reactions and weak interactions between molecules via the formation of HONO, NO2-HSO3, and NH3/H2O. In addition, field observations are carried out, and the measured data are summarized. Correlation analysis supported the conversion of NO2 to HONO during observational studies. The weak interactions promote proton transfer, resulting in the generation of HONO, NO2-HSO3, and NH3/H2O pairs.A palladium-catalyzed highly regio- and stereoselective allenic C-H oxidative coupling with α-diazo esters is developed. The reaction pathway involves allylic palladium carbene as the key intermediate, which is followed by a carbene migratory insertion process. The reaction proceeds efficiently under mild conditions without external base, providing substituted [3]dendralenes bearing various functional groups.An increasing number of alternative flame retardants (FRs) are being introduced, following the international bans on the use of polybrominated diphenyl ether (PBDE) commercial mixtures. FRs' production capacity has shifted from developed countries to developing countries, with China being the world's largest producer and consumer of FRs. These chemicals are also imported with e-waste to China. Therefore, it is important to understand the current status of regulated brominated FRs, their phase-out in China, and their replacement by alternatives. In this study, a broad suite of legacy and alternative FRs, including eight PBDEs, six novel brominated FRs (NBFRs), two dechlorane plus variants (DPS), and 12 organophosphate FRs (OPFRs) were evaluated in the air of 10 large Chinese cities in 2018. OPFRs are the most prevalent FRs in China, exhibiting a wide range of 1-612 ng/m3, which is several orders of magnitude higher than PBDEs (1-1827 pg/m3) and NBFRs (1-1428 pg/m3). BDE 209 and DBDPE are the most abundant compounds in brominated FRs (>80%). The North China Plain (NCP, excluding Beijing), Guangzhou, and Lanzhou appear to be three hotspots, although with different FR patterns. From 2013/2014 to 2018, levels of PBDEs, NBFRs, and DPs have significantly decreased, while that of OPFRs has increased by 1 order of magnitude. Gas-particle partitioning analysis showed that FRs could have not reached equilibrium, and the steady-state model is better suited for FRs with a higher log KOA (>13). https://www.selleckchem.com/products/FK-506-(Tacrolimus).html To facilitate a more accurate FR assessment in fine particles, we suggest that, in addition to the conventional volumetric concentration (pg/m3), the mass-normalized concentration (pg/g PM2.5) could also be used.Urban rivers worldwide are affected directly by macrophyte growth, causing reduced flow velocity and risks of flooding. Therefore, cutting macrophytes is a common management practice to ensure free drainage. The impacts of macrophyte removal on transient storage dynamics and microbial metabolic activity of wastewater-fed urban streams are unknown, preventing any assessment of the hydrodynamic and biogeochemical consequences of this management practice. Slug tracer injections were performed with the conservative tracer uranine and the reactive tracer resazurin to quantify the implications of macrophyte cutting on stream flow dynamics and metabolism. Macrophyte cutting reduced mean tracer arrival times in managed stream reaches but did not significantly decrease whole-stream microbial metabolic activity. In fact, transient storage indices were found to have increased after cutting, suggesting that macrophyte removal and the resulting increase in flow velocity may have enhanced hyporheic exchange flow through streambed sediments.