A polylactide composite fracture fixator loaded with vancomycin cationic liposome (PLA@VL) was prepared by reverse evaporation method. The method of cationic liposome encapsulating vancomycin could effectively improve antibacterial property and achieve drug sustained release effect, so as to reduce toxicity of antibiotics in vivo. Scanning electron microscope (SEM) was used to observe morphology and Fourier transform infrared spectroscopy (FTIR) was used to detect the composition of the internal fixator. In vitro drug release model, in vitro degradation model and body fluid osteogenesis model were designed in this study. On the other hand, the experiments of inhibition zone and MC3T3-E1 osteoblasts in mice were conducted to explore antibacterial property, cell activity and adhesion of the PLA@VL composite internal fixator. Alkaline phosphatase (ALP) staining method and alizarin red assay were used to detect the osteogenic induction ability of the composite internal fixator. Finally, mice fracture models were established to verify osteogenic and anti-infection abilities of the composite internal fixator in vivo. https://www.selleckchem.com/products/selonsertib-gs-4997.html The results showed that MC3T3-E1 cells had better adhesion and proliferation abilities on the PLA@VL composite internal fixator than on the PLA fixator, which indicated that the PLA@VL composite internal fixator possessed excellent osteogenic and anti-infection abilities both in vivo and in vitro. Therefore, the above experiments showed that the fracture internal fixator combined with vancomycin cationic liposome had better biocompatibility, antibacterial ability and osteogenic ability, which provides a promising anti-infection material for the clinical field of fracture.The second most abundant biological macromolecule, next to cellulose is Chitosan. It is a versatile naturally occurring hydrophilic polysaccharide, derived as a deacetylated form of chitin. Due to its biocompatibility, biodegradability and antimicrobial activity, it has become a significant area of research towards drug delivery system, plant growth promotion, anti-pathogenic potentiality, seed priming and in plant defense mechanism. Various synthetic strategies have been established in recent years that couples different metals with chitosan nanoparticles. Metals like silver, copper, zinc, iron and nickel are highly compatible to form chitosan metallic nanoparticles and are proved to be non-toxic to the agricultural plant system. This review highlights the mode of action of nanochitosan on Gram-positive and Gram-negative bacteria in a distinguished manner as well as its action on fungi. A prime focus has been given on the skeletal framework of the metallic nanochitosan particles. Our study also projects the antimicrobial mechanism of chitosan based on its physiochemical properties, environmental factors and the type of organism on which it acts. Moreover, the mechanism for stimulation of plant immunity by metallic nanochitosan has also been reviewed. Our study relies on the conclusion that chitosan metallic nanoparticles showed enhanced anti-pathogenic and plant growth promoting activity in comparison to bulk chitosan.A water-soluble glucose-rich polysaccharide from dried 'Shixia' longan pulp (LPsx) has been isolated for the first time, and its structure and immuno-regulatory mechanism were studied. LPsx is a hetero-polysaccharide with the average molecular weight 4102 g/mol. It was mainly consisted of glucose (95.9%), and small proportions of arabinose (2.1%), galactose (1.0%), mannose (0.6%), and xylose (0.4%). As analyzed by NMR, LPsx was mainly composed of (1 → 6)-α-d-glucose and (1 → 6)-β-d-glucose, branched with α-d-glucose-(1→. The immunomodulatory activity study showed that LPsx significantly increased the phagocytosis of macrophages, and strongly promoted the production of NO, IL-1β, IL-6 and TNF-α. Moreover, LPsx could inhibit the inflammatory response induced by lipopolysaccharide. The immuno-regulatory mechanism of LPsx was studied using RNA- sequencing and receptors activity analyses. It was found that LPsx induced macrophage activation via Ca2+ and CR3-mediated MAPKs and PI3K-AKT signaling pathways. The results would be helpful for revealing the health promoting mechanism of dried 'Shixia' longan in traditional Chinese medicine.Polycyclic aromatic hydrocarbons are environmental pollutants with strong carcinogenicity, indirect teratogenicity, and mutagenicity. This study explored the interaction mechanism of benzo(a)pyrene with free DNA in vitro by using various analytical methods. UV-vis spectra showed that benzo(a)pyrene and DNA formed a new benzo(a)pyrene-DNA complex. The thermal melting temperature of DNA increased by 12.7 °C, showing that the intercalation of benzo(a)pyrene into DNA could promote the stability of the DNA double helix structure. The intercalation of benzo(a)pyrene with DNA in vitro was further confirmed by fluorescence microscopy with magnetic beads. Fluorescence spectra showed that the interaction between DNA and benzo(a)pyrene decreased the fluorescence intensity of benzo(a)pyrene, and the maximum quenching rate was 27.89%. The quenching mode of benzo(a)pyrene was static quenching. Thermodynamic data showed that the main driving forces were van der Waals forces and hydrogen bonds, and the reaction was spontaneous. The results of this study provided a novel insight for the establishment of polycyclic aromatic hydrocarbon capture and elimination through polycyclic aromatic hydrocarbon-DNA intercalation.The multistage reclamation of materials has made contributions to sustainable development, but further progress is still sought after. In this work, functionalized seaweed-based composites were successfully prepared and utilized in multiple stages. Specifically, Co2+-containing alginate hydrogels (CHB-Co2+) prepared by sol-gel self-assembly and adsorption method using interior/exterior co-functionalized calcium alginate as raw materials were utilized for efficient reduction of p-nitrophenol. After coupling with freeze-drying and carbonization procedures, a high-performance Co/N co-doped carbonaceous microwave absorber was obtained and investigated in detail. By virtue of unique 3D interconnected network, heterogeneous interfaces and doped heteroatom N species, by which endowing the absorber with optimal impedance matching and attenuation ability, as-fabricated NC-Co-700 exhibited prominent microwave absorption performance with -54.2 dB of RLmin at 6.4 GHz and 5.3 GHz of maximum absorption bandwidth (from 12.7 to 18.