The structures of the single crystals of compounds K2UO2(tca)4(tcaH)2 (I), K4NpO2(tca)6(tcaH)(H2O)3 (II), Rb4UO2(tca)6(tcaH)(H2O)3 (III), and Cs3UO2(tca)5(tcaH)2·H2O (IV), where tca is the trichloroacetate ion, were established by X-ray diffraction analysis. The crystals of II-IV have a framework structure, whereas in the layered crystals of I, neighboring layers are connected to each other via halogen bonds. In this regard, the crystals of I possess perfect cleavage along the (001) plane the crystals are easily cut into stacks of very thin layers. Halogen bonds in the structures of all title compounds were characterized using the method of molecular Voronoi-Dirichlet polyhedra. The donor-acceptor halogen bond synthon, where the same halogen atom is both the donor towards one halogen atom and the acceptor from the second halogen atom, is recognized for its usefulness in the crystal design. The description of the ligand coordination modes and crystal chemical formulae of complexes is adapted for cases when ligands have chemically non-equivalent and unobvious donor atoms (for example, oxygen and halogen atoms in halogen-substituted carboxylate anions).Fluoropolymers have unique physicochemical properties such as hydrophobicity and lipophobicity, good chemical stability and bio-inertness, low surface energy and phase segregation. Owing to these properties, fluoropolymers have been widely used to prepare high performance materials. Especially, the use of fluoropolymers in biomedical applications has grown rapidly during the past decade. This critical review focuses on the recent advances of fluoropolymers in gene delivery, cytosolic protein delivery, drug delivery, magnetic resonance imaging, photodynamic therapy, anti-fouling and anti-bacterial applications, and tissue engineering. The mechanisms and features of fluoropolymers in these specific applications are discussed. Besides, we have reviewed the methods to synthesize water-soluble fluoropolymers for the applications and explained their supramolecular assembly behaviors in solutions. Finally, the opportunities and challenges of fluoropolymers in biomedical applications are discussed.Grain boundary trap passivation in perovskite films has become one of the most effective strategies for suppressing the charge recombination and enhancing the photovoltaic performance of perovskite solar cells, whereas the relevant trap-state properties and the charge carrier dynamics need to be further clarified. In this work, the CH3NH3Cl (MACl) additive is introduced into the MAIPbI2 precursor solution to obtain perovskite films comprising various grain sizes with distinct grain boundaries and trap-state properties. The influence of grain boundary traps passivated with the MACl additive on trap-state properties and charge carrier transport/recombination dynamics is systematically studied with time-resolved spectroscopic and transient photoelectric characterization. Specifically, the MACl amount determines the content of the PbI2 residual in the final perovskite, leading to photoluminescence quenching induced by charge transfer. The trap-state distribution result reveals that the deep-level traps at the grain boundaries as the main sources of charge recombination centers are dramatically passivated. https://www.selleckchem.com/products/VX-770.html Low-temperature photoluminescence spectroscopy distinguishes and compares the trap-state emission related to different perovskite phases. Transient photoelectric measurements including photovoltage decay and charge extraction further demonstrate that the boundary trap passivation can effectively promote charge transport and inhibit charge recombination in devices treated with the optimized MACl amount. As a result, the corresponding device possesses superior photovoltaic parameters to the control device. This work proposes a systematic understanding of the grain boundary trap passivation strategy and provides a new insight into the development of high-performance perovskite solar cells.A combination of in situ XANES, temperature programmed oxidation, kinetic and density functional theory results demonstrate that the d-band centers (εd) of Au and Pt metals are upshifted when 39.9 V m-1 of electric field is applied. This leads to the enhancement of the adsorption strength of CO on both metals, and, thus, results in the promotion (+15%) and the depression (-23%) of CO conversions on Au and Pt, respectively, in the CO oxidation.Despite the cessation of its production and use in many parts of the world, hexachlorobenzene (HCB) remains highly persistent in the environment, and chronic, low-dose exposure to HCB in humans continues. Its structural resemblance to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), ability to activate the aryl hydrocarbon (Ah) receptor, TCDD-like toxicities, and bioaccumulative nature suggest HCB be included in the toxic equivalency factor (TEF) methodology. Consequently, the National Toxicology Program conducted this subchronic study of HCB, including measurement of a variety of toxicological and biochemical endpoints, to allow comparison to TCDD data obtained in a previous 2-year bioassay. (Abstract Abridged). Sleep-disordered breathing, composed of obstructive sleep apnea (OSA) and central sleep apnea (CSA), affects millions of people worldwide carrying with it significant morbidity and mortality. Diagnosis is made by polysomnography, and severity of sleep apnea is determined by the apnea-hypopnea index (AHI). Positive airway pressure (PAP) therapy has been the gold standard in treating both OSA and CSA. PAP therapy can greatly reduce AHI burden as well as morbidity and mortality and improve quality of life. However, patients report difficulties adhering to PAP therapy because of discomfort with mask interface, sensation of excessive pressure, and claustrophobia. Although other options exist to treat sleep apnea, such as mandibular advancement oral appliance devices, positional therapy, and surgery, these additional therapeutic modalities as current options have limitations. Emerging technology is now available to overcome hindrances to standard therapy. A literature search was performed from the following databases PubMed, Cochrane Library (Cochrane Database of Systematic Reviews), and Cochrane Central Register of Controlled Trials, and FDA device database (clinicaltrial.