https://www.selleckchem.com/ALK.html On this basis, a summary about the hybridization of above 2D metal-free materials is presented, and the merits of 2D/2D hybrid systems are elaborated. Last, we wrap up this review with some summative remarks, covering understanding their own unique strengths and weaknesses by comparison and proposing the major challenges and perspectives in this emerging field.Microbial fuel cell (MFC) is an optimistic fuel cell technology that applies microorganism's biochemical catalytic activities in consuming organic substrate and produce electricity. In the past, several researchers have reported power generation from Saccharomyces cerevisiae, but nowadays, most of the studies are centred around bacterial biofilms (prokaryotes) as anode biocatalyst. Yeast (a eukaryote) has also been applied as a biocatalyst in MFCs as they are non-pathogenic, easy to handle and tolerant to various environmental conditions. Yeast strains such as Arxula adeninvorans, Candida melibiosica, Hansenula polymorpha, Hansenula anomala, Kluyveromyces marxianus and Saccharomyces cerevisiae have been utilized in MFCs. This review summarizes the application of yeast as an anode biocatalyst together with a discussion on the mechanism of electron transfer from yeast cells to the anode and highlights the techniques applied in improving the efficiency of yeast-based MFCs. The recent challenges and benefits of utilizing yeast in MFCs have been also encapsulated in this review.As environmental pollution with plastic waste is increasing, numerous reports show the contamination of natural habitats, food and drinking water with plastic particles in the micro- and nanometer range. Since oral exposure to these particles is virtually unavoidable, health concerns towards the general population have been expressed and risk assessment regarding ingested plastic particles is of great interest. To study the intestinal effects of polymeric particles with a density of less then 1 g/cm³ in v