Over the second half of the 19th century, numerous theories arose concerning mechanisms involved in understanding of action, imitative learning, language development and theory of mind. These explorations gained new momentum with the discovery of the so called "mirror neurons". Rizzolatti's work inspired large groups of scientists seeking explanation in a new and hitherto unexplored area of how we perceive and understand the actions and intentions of others, how we learn through imitation to help our own survival, and what mechanisms have helped us to develop a unique human trait, language. Numerous studies have addressed these questions over the years, gathering information about mirror neurons themselves, their subtypes, the different brain areas involved in the mirror neuron system, their role in the above mentioned mechanisms, and the varying consequences of their dysfunction in human life. In this short review, we summarize the most important theories and discoveries that argue for the existence of the mirror neuron system, and its essential function in normal human life or some pathological conditions.Brain abscesses are potentially serious, life-threatening diseases that pose a complex diagnostic challenge not only to neurosurgeons but also to clinical microbiologists, neurologists, psychiatrists, infectologists. The etiology of brain abscess is usually polymicrobial, most commonly involving a variety of aerobic and obligate anaerobic bacteria. Epidemiological studies on the anaerobic etiology of brain abscesses are common between the time period of 1960s and 1980s, but today there are very few new publications on the subject. The role of anaerobic bacteria in this disease was presumably underdiagnosed for a very long time, as many laboratories did not have the adequate laboratory capabilities for their cultivation and identification. https://www.selleckchem.com/products/Y-27632.html The purpose of this review is to summarize the available literature on the etiology of obligate anaerobic bacteria in brain abscesses, including their prevalence and current therapeutic recommendations. Far lateral lumbar disc herniations (FLDH) consist approximately 0.7-12% of all lumbar disc herniations. Compared to the more common central and paramedian lumbar disc herniations, they cause more severe and persistent radicular pain due to direct compression of the nerve root and dorsal root ganglion. In patients who do not respond to conservative treatments such as medical treatment and physical therapy, and have not developed neurological deficits, it is difficult to decide on surgical treatment because of the nerve root damage and spinal instability risk due to disruption of facet joint integrity. In this study, we aimed to evaluate the effect of transforaminal epidural steroid injection (TFESI) on the improvement of both pain control and functional capacity in patients with FLDH. A total of 37 patients who had radicular pain caused by far lateral disc herniation which is visible in their lumbar magnetic resonance imaging (MRI) scan, had no neurological deficit and did not respond to conservative trearnia. This study has demonstrated that TFESI is an effective method for gaining increased functional capacity and pain control in the treatment of patients who are not suitable for surgical treatment with radicular complaints due to far lateral lumbar disc hernia. Myasthenia gravis (MG) is an autoimmune disorder of neuromuscular transmission. Autonomic dysfunction is not a commonly known association with MG. We conducted this study to evaluate autonomic functions in MG & subgroups and to investigate the effects of acetylcholinesterase inhibitors. This study comprised 30 autoimmune MG patients and 30 healthy volunteers. Autonomic tests including sympathetic skin response (SSR) and R-R interval variation analysis (RRIV) was carried out. The tests were performed two times for patients who were under acetylcholinesterase inhibitors during the current assessment. The RRIV rise during hyperventilation was better (p=0.006) and Valsalva ratio (p=0.039) was lower in control group. The SSR amplitudes were lower thereafter drug intake (p=0.030). As much as time went by after drug administration prolonged SSR latencies were obtained (p=0.043).Valsalva ratio was lower in the AchR antibody negative group (p=0.033). The findings showed that both ocular/generalized MG patients have a subclinical parasympathetic abnormality prominent in the AchR antibody negative group and pyridostigmine has a peripheral sympathetic cholinergic noncumulative effect. The findings showed that both ocular/generalized MG patients have a subclinical parasympathetic abnormality prominent in the AchR antibody negative group and pyridostigmine has a peripheral sympathetic cholinergic noncumulative effect. Transcranial magnetic stimulation is a non-invasive procedure that uses robust magnetic fields to create an electrical current in the cerebral cortex. Dual stimulation consists of administering subthre-shold conditioning stimulation (CS), then suprathreshold test stimulation (TS). When the interstimulus interval (ISI) is 1-6 msec, the motor evoked potential (MEP) decreases in amplitude; this decrease is termed "short interval intracortical inhibition" (SICI); when the ISI is 7-30 msec, an increase in MEP amplitude occurs, termed "short interval intracortical facilitation" (SICF). Continuous theta burst stimulation (cTBS), often applied at a frequency of 50 Hz, has been shown to decrease cortical excitability. The primary objective is to determine which duration of cTBS achieves better inhibition or excitation. The secondary objective is to compare 50 Hz cTBS to 30 Hz and 100 Hz cTBS. The resting motor threshold (rMT), MEP, SICI, and SICF were studied in 30 healthy volunteers. CS and TS were administered aetter inhibition with greater safety and less inter-individual variability. Our results suggest that performing SICI and SICF for 3 and 12 msec, respectively, and CS and TS at 80%-120% of rMT, demonstrate safer inhibition and facilitation. Recently, TBS has been used in the treatment of various neurological diseases, and we recommend preferentially 30 Hz over 50 Hz cTBS for better inhibition with greater safety and less inter-individual variability.