https://www.selleckchem.com/products/kya1797k.html Diversity of cell-types that collectively shape the cortical microcircuit ensures the necessary computational richness to orchestrate a wide variety of behaviors. The information content embedded in spiking activity of identified cell-types remain unclear to a large extent. Here, we recorded spike responses upon whisker touch of anatomically identified excitatory cell-types in primary somatosensory cortex in naive, untrained rats. We find major differences across layers and cell-types. The temporal structure of spontaneous spiking contains high-frequency bursts (≥100 Hz) in all morphological cell-types but a significant increase upon whisker touch is restricted to layer L5 thick-tufted pyramids (L5tts) and thus provides a distinct neurophysiological signature. We find that whisker touch can also be decoded from L5tt bursting, but not from other cell-types. We observed high-frequency bursts in L5tts projecting to different subcortical regions, including thalamus, midbrain and brainstem. We conclude that bursts in L5tts allow accurate coding and decoding of exploratory whisker touch.BRAFV600E melanoma patients, despite initially responding to the clinically prescribed anti-BRAFV600E therapy, often relapse, and their tumors develop drug resistance. While it is widely accepted that these tumors are originally driven by the BRAFV600E mutation, they often eventually diverge and become supported by various signaling networks. Therefore, patient-specific altered signaling signatures should be deciphered and treated individually. In this study, we design individualized melanoma combination treatments based on personalized network alterations. Using an information-theoretic approach, we compute high-resolution patient-specific altered signaling signatures. These altered signaling signatures each consist of several co-expressed subnetworks, which should all be targeted to optimally inhibit the entire altered signaling flux. Ba