https://www.selleckchem.com/products/Nicotinamide(Niacinamide).html At ΔT less then 15 °C the dried deposit are found to exhibit coffee-ring like stains.The interest in the application of nanofluid in reducing injection pressure has been increasing especially for tight reservoirs. In this work, a new type of hydrophobic carbon nanofluid was prepared and the pressure-reducing performance was investigated. The results of particle size distribution, zeta potential, and transmission electron microscopy image showed that the dispersion of nanofluid was uniform and stable. In addition, the hydrophobic carbon nanofluid showed excellent antitemperature and antisalinity property. The contact angle of oil-wet glass slide can range from 45 to 89° after it adsorbs hydrophobic carbon nanoparticles (HCNPs). The atomic force microscope tests showed that the core surface roughness was reduced about 16.67%. The core flooding tests showed that the pressure-reducing rate of 0.15 wt % HCNP nanofluid can reach 17.00%. HCNPs show good performance in reducing pressure and have a broad application prospect in oil field development.Perovskite α-CsPbI3 nanocrystals (NCs) with a high fluorescence quantum yield (QY) typically undergo a rapid phase transformation to a low-QY δ-CsPbI3 phase, thus limiting their optoelectronic applications. In this study, organic molecule hexamethyldisilathiane (HMS) is used as a unique surfactant to greatly enhance the stability of the cubic phase of CsPbI3 NCs (HMS-CsPbI3) under ambient conditions. The reaction kinetics of the phase transformation of CsPbI3 NCs are systemically investigated through in situ photoluminescence (PL), X-ray diffraction, and transmission electron microscope (TEM) measurements under moisture. The activation energy of HMS-CsPbI3 NCs is found to be 14 times larger than that of CsPbI3 NCs capped by olyelamine (OLA-CsPbI3 NCs). According to density functional theory calculations, the bonding between HMS and CsPbI3 NCs is stronger than tha