https://www.selleckchem.com/products/gc7-sulfate.html Rapid and accurate monitoring of cancer cells with high sensitivity is essential for a successful cancer treatment. As high-affinity nucleic acid ligands, aptamers can improve the properties of detection methods by conjugating with intracellular or extracellular cancer biomarkers. Despite the advances in the early detection and treatment of cancer cells, lacking effective early detection tools is one of the causes of a high mortality rate. Aptasensors, which are based on the specificity of aptamer-target recognition, with transduction for analytical purposes have received particular attention due to their high sensitivity and selectivity, simple instrumentation, as well as low production cost. In this review, some selective and sensitive methods were summarized based on advanced nanomaterials towards aptasensing of cancer cells, such as blood, breast, cervical, colon, gastric, liver, and lung cancer cells. This review summarizes advances from 2010 to June 2020 in the development of aptasensors for cancer cell detection. Various aptasensing strategies are assessed according to their potential for reaching relevant limits of sensitivity, specificity, and degrees of multiplexing. Furthermore, we address the remaining challenges and opportunities to integrate aptasensing platforms into point-of-care solutions. Finally, the advantages and limitations of aptamer-based aptasensing strategies were reviewed.A novel dicyanoisophorone (DCI)-based NIR fluorophore employing 2, 4-thiazolidinediones as the modification site was designed for fluorescence imaging. The fluorophore was assessed as a switchable reporter for H2O2 and the probe exhibited lysosomes-targeted, a large turn-on fluorescence signal at 720 nm with a large stokes shift (150 nm) and can be used in biological systems. The ability of the novel fluorophore to emit NIR fluorescence through a "turn-on" activation mechanism makes it a promising fluorophore for in vi