The pregnane X receptor (PXR) not only plays an important role in cellular metabolism processes but also induces the resistance of hepatocellular carcinoma (HCC) cells to molecularly targeted drugs by mediating their metabolism and clearance by these cells. Endothelial PAS domain-containing protein 1 (EPAS-1) acts as a coactivator to regulate the transcription factor activity of PXR. In the present study, a microRNA that potentially targets EPAS-1, namely miR-3609, was identified using the miRDB tool. The expression of miR-3609 and EPAS-1 was examined by qPCR. Lentiviral particles containing the full-length sequences of miR-3609 (pri-miR-3609) were prepared. The antitumor effect of antitumor agents was examined by the in vitro and in vivo assays. The expression of miR-3609 was negatively correlated with that of EPAS-1 in both HCC clinical specimens and paired non-tumor specimens, and the effect of miR-3609 on the expression of EPAS-1 was confirmed by Western blot experiments. Overexpression of miR-3609 decreased the expression of EPAS-1 and, in turn, repressed the activation of the PXR pathway. miR-3609 decreased the transcription factor activation of PXR, repressed its recruitment to its target gene promoter regions, and decreased the expression of its target genes CYP3A4 and P-GP. In addition, miR-3609 decelerated the metabolism and clearance of sorafenib in HCC cells and enhanced the antitumor effect of sorafenib in HCC cells. Therefore, the results indicate that miR-3609 decreases the expression of EPAS-1 and enhances the sensitivity of HCC cells to sorafenib. Therefore, the results indicate that miR-3609 decreases the expression of EPAS-1 and enhances the sensitivity of HCC cells to sorafenib. Metabolomics has recently been applied in the field of oncology. In this study, we aimed to use metabolomics to explore biomarkers in peritoneal metastasis of gastric cancer. Peritoneal lavage fluid (PLF) of 65 gastric cancer patients and related clinical data were collected from the First Hospital of Jilin University. The metabolic components were identified by liquid chromatography-mass spectrometry (LC-MS). Total ion current (TIC) spectra, principal component analysis (PCA), and the Student's -test were used to identify differential metabolites in PLF. A support vector machine (SVM) was used to screen the differential metabolites in PLF with a weight of 100%. Cluster analysis was used to evaluate the similarity between samples. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic ability of the metabolites. Univariate and multivariate logistic regression analyses were used to identify potential risk factors for peritoneal metastasis of gastric cancer. We found thoxysterol, tetradecanoic acid, MG (210/00/00), tridecanoic acid, myristate glycine and octacosanoic acid may be biomarkers for peritoneal metastasis of gastric cancer.Extranodal natural killer (NK)/T-cell lymphoma, nasal type (ENKTL) is a specific subtype of peripheral T cell lymphoma (PTCL) with a poor prognosis. To date, there exist no standard therapeutic regimens for relapsed/refractory (R/R) ENKTL. More potent treatment strategies are urgently needed to improve the survival of these patients with R/R ENKTL. https://www.selleckchem.com/products/apx2009.html Herein, we present three R/R ENKTL patients who failed prior therapies (L-asparaginase containing chemotherapy, radiotherapy or biological-cell therapy, etc.) benefited from the combination regimen comprised of anti-programmed-death-1 (PD-1) antibody toripalimab, chidamide, etoposide, and thalidomide. They received the treatment regimen continuously until the disease progression occurs. As of data collection, two patients achieved complete remission (CR) after 4, 6 cycles of treatment, respectively, and another patient was evaluated as partial remission (PR) after 2 cycles. Treatment-related adverse events (AEs) mainly presented grade 2~3 leukocytopenia and anemia, which were controllable. It follows that PD-1 antibody, chidamide, etoposide, and thalidomide (PCET) regimen may be a promising choice for patients with R/R ENKTL and warrants further investigation. Although molecular-targeted agents are still the first choice for advanced hepatocellular carcinoma (HCC) treatment, the therapeutic efficacy of these agents is not satisfactory. Recently, the mammalian target of rapamycin (mTOR) is considered to be a promising molecular target that can enhance the sensitivity of HCC cells to antitumor therapy. However, the reported mTOR inhibitors have some shortcomings, and novel mTOR inhibitors need to be developed to enhance the antitumor effect of molecularly targeted agents on advanced HCC. In this study, five small-molecular compounds that could serve as potential mTOR-specific inhibitors were identified by virtual screening. The activity of tert-butyl (4-(9-(2-(1,3-dioxolan-2-yl)ethyl)-6-morpholino-9H-purin-2-yl)phenyl)carbamate (compound ) was measured by enzyme test and Western blot, and its antitumor effect on HCC was examined in nude mice subcutaneous tumor model. The results showed that is the most effective one in inhibiting the activation of mTOR kinase (mTOR IC = 17.52±3.67 nmol/L) among the five lead compounds. Further research in this study indicated that treatment with enhanced the sensitivity of HCC cells to the molecular-targeted agents, such as sorafenib, regorafenib, lenvatinib, anlotinib, and apatinib. In addition, this research indicated that mTOR was correlated with the poor prognosis in patients with advanced HCC who received sorafenib. Our study identified a new type of small-molecular inhibitors of mTOR and confirmed their ability to enhance the antitumor effect of molecular-targeted agents on advanced HCC. Our study identified a new type of small-molecular inhibitors of mTOR and confirmed their ability to enhance the antitumor effect of molecular-targeted agents on advanced HCC. This study aims to reveal the mechanism underlying baicalin-suppressing ovarian cancer stemness. OVCAR-3 and the primary ovarian cancer cells were used for cell model. The ovarian cancer stem cells were isolated by suspension culture. Cell viability and clonogenicity were examined by CCK-8 assay and colony formation assay. The self-renewal of the cells was evaluated by the determination of sphere-forming capacity and the frequency of in vitro sphere-forming and in vivo tumor-initiating cells. The mRNA and protein levels were relatively quantified by qRT-PCR and Western blot. The transcription regulation of target genes was tested by luciferase reporter assay and a modified nuclear rn-on qRT-PCR assay. Treatment with a non-toxic dose of baicalin significantly inhibited the spherogenicity of ovarian cancer cells. Moreover, a non-toxic dose of baicalin treatment suppressed the frequency of sphere-forming and tumor-initiating ovarian cancer cells. Furthermore, the expression of ovarian cancer stem cell markers (CD133 and ALDH1A1) was inhibited by a non-toxic dose of baicalin treatment.