LINC01089, a newly discovered long non-coding RNA (lncRNA), has been reported to inhibit the progression of various types of cancers. This study aimed to characterize LINC01089 in the pathogenesis of lung adenocarcinoma (LUAD). LINC01089 expression in LUAD tissues or/and cells and its association with the overall survival of LUAD patients was analyzed in The Cancer Genome Atlas (TCGA)-LUAD database, by qRT-PCR or by Kaplan-Meier's curve. Databases of StarBase, LncBase, and DEmiRNA were used to predict and confirm the interaction between LINC01089 and potential LINC01089-targeted microRNAs (miRNAs). The expressions of these miRNAs in LUAD tissues or/and cells were determined by qRT-PCR, and dual-luciferase reporter assay was performed to validate lncRNA-miRNA interaction. The expressions of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and Cleaved caspase-3 in LUAD cells were analyzed by Western blot. LINC01089 improved overall survival of LUAD patients and was low-expressed in LUAD. Upregulating LINC01089 expression reduced LUAD cell viability, inhibited colony formation, enhanced apoptosis, accompanied by downregulated Bcl-2 and miR-543 and upregulated Bax and Cleaved caspase-3. MiR-543 was determined as a target gene of LINC01089, and was high-expressed in LUAD tissues. Upregulating miR-543 expression induced the opposite effects to LINC01089 upregulation on these cellular biological behaviors and the expressions of Bcl-2, Bax and Cleaved caspase-3. Moreover, the effects of miR-543 upregulation and LINC01089 upregulation were mutually counteracted by each other. LINC01089 inhibited lung adenocarcinoma cell proliferation and promoted apoptosis via sponging miR-543.During pregnancy, Toxoplasma gondii can triggers serious manifestations and potentially affect the fetal development. In this scenario, differences in susceptibility of trophoblast cells to T. gondii infection might be evaluated in order to establish new therapeutic approaches capable of interfering in the control of fetal infection by T. gondii. This study aimed to evaluate the susceptibility of cytotrophoblast, syncytiotrophoblast and extravillous trophoblast cells to T. gondii infection. Our data demonstrate that HTR-8/SVneo cells (extravillous trophoblast cells) present higher susceptibility to T. gondii infection when compared to syncytiotrophoblast and cytotrophoblast cells, whereas syncytiotrophoblast was the cell type more resistant to the parasite infection. Also, cytotrophoblast and syncytiotrophoblast cells produced significantly more IL-6 than HTR-8/SVneo cells. On the other hand, HTR-8/SVneo cells showed higher ERK1/2 phosphorylation than cytotrophoblast and syncytiotrophoblast cells. ERK1/2 inhibition reduced T. gondii infection and increased IL-6 production in HTR-8/SVneo cells. Thus, it is plausible to conclude that the greater susceptibility of HTR-8/SVneo cells to infection by T. gondii is related to a higher ERK1/2 phosphorylation and lower levels of IL-6 in these cells compared to other cells, suggesting that these mediators may be important to favor the parasite infection in this type of trophoblastic population.Extrapleural space (EPS) is a potential space between the outer layer of the parietal pleura and the inner layer of the chest wall and the diaphragm. Many different pathologies including chronic inflammatory conditions, infections, trauma, neoplastic disease (both benign and malignant) as well as many infiltrative disorders can involve the EPS. It is one of the frequently overlooked entity on imaging due to relative lack of understanding of the anatomy and the imaging appearances of the diseases localized to this space. The knowledge of the EPS is essential for the radiologists as the pathologies which involve the EPS may require different treatment approach compared to pleural or parenchymal lung disease. Additionally, the EPS involvement may influence the staging and treatment planning for chest malignancies. In this review, we give an overview of the anatomy and various pathologies involving EPS, utility of different imaging modalities in the evaluation of EPS lesions with emphasis on cross sectional imaging and emerging technologies like spectral CT and its role in recognizing the imaging features which enable specific diagnosis of various pathologies.Drug resistance and adverse reactions to oxaliplatin remain a considerable issue in clinical practice. Emerging evidence has suggested that alterations in the lipid metabolism during drug therapy affect cancer cells. To gain insight into the important process of lipid metabolism, we investigated the lipid and gene expression profile changes in HT29 cells treated with oxaliplatin. A total of 1403 lipid species from 16 lipid classes were identified by UHPLC-MS. Interestingly, phospholipids, including phosphatidylglycerol (PG), phosphatidic acid (PA), phosphatidylcholine (PC), and most of phosphatidylethanolamine (PE) with polyunsaturated fatty acid (PUFA) chains, were significantly higher due to oxaliplatin treatment, while triacylglycerols (TAGs) with a saturated fatty acid chain or monounsaturated fatty acid were significantly downregulated. Gene Set Enrichment Analysis (GSEA) based on RNA sequencing data suggested that neutral lipid metabolism was enriched in the control group, whereas the phospholipid metabolic process was enriched in the oxaliplatin-treated group. We observed that altered lipid metabolism enzyme genes were involved in the synthesis and lipolysis of TAGs and the Lands cycle pathway based on the network between the core lipid-related gene and lipid species, which was further verified by qRT-PCR. In summary, our findings revealed that oxaliplatin impressed a specific lipid profile signature and lipid transcriptional reprogramming in HT29 cells, which provides new insights into biomarker discovery and pathways for overcoming drug resistance and adverse reactions.The detection, identification and quantification of drug metabolites plays a key role in drug discovery and development. Liquid chromatography (LC) coupled to mass spectrometry (MS) has become the primary technology for these studies due to its sensitivity and specificity. https://www.selleckchem.com/products/plx8394.html However, the presence of transition metals in the chromatography system and columns can result in non-specific and unwanted interactions with the drug and/or its metabolites, via electron-pair donation, leading to poor chromatography and analyte loss. The use of a hybrid organic/inorganic surface applied to the metal surfaces of the chromatography system and column has been demonstrated to reduce or eliminate these effects. When employed for the analysis of mouse urine, derived from the oral dosing of mice with the EGFR inhibitor gefitinib, we observed more symmetrical LC peaks. This resulted in a 33 % improvement in peak capacity for a 10 min reversed - phase gradient separation, a two-fold increase in MS response, cleaner MS spectra and improved peak response reproducibility.