https://www.selleckchem.com/ALK.html In addition, following treatment with curcumin for 48 h, H19 expression was decreased in a dose‑dependent manner. Moreover, curcumin treatment for 48 h significantly attenuated H19‑induced alterations in N‑cadherin and E‑cadherin expression levels. Curcumin also prevented H19‑induced invasion and migration. The present study indicated that H19 may serve as a promoting factor of EMT, invasion and migration in MCF‑7/TAMR cells, suggesting that curcumin may prevent H19‑associated metastasis. Therefore, curcumin may serve as a promising therapeutic drug for patients with TAMR breast cancer.While radiation nephropathy is a major problem associated with radiotherapy, the exact mechanisms underlying its pathogenesis and the mediators involved in kidney deterioration remain to be elucidated. In view of the finding that senescence is typically increased post‑irradiation, the present study examined whether ionizing radiation may cause kidney injury by enhancing premature senescence. The present study explored the relevance of the aging suppressor, Klotho, which has anti‑aging activity and is highly expressed in murine renal cells/kidney tissues, under irradiation conditions. Firstly, the effects of radiation on mouse inner medullary collecting duct‑3 (mIMCD‑3) cells and kidney tissues of mice were assessed. Subsequently, the mRNA expression levels of Klotho, TNF‑α and ADAM metallopeptidase domain (ADAM)9/10/17 were analyzed by reverse transcription‑quantitative PCR following exposure to radiation. In addition, the levels of these proteins were measured by western blotting or ELISA. The results revealed that irradiation of mIMCD‑3 cells clearly triggered cellular senescence. Notably, Klotho gene expression was considerably decreased in radiation‑exposed mIMCD‑3 cells and in the kidney tissues of irradiated BALB/c mice, and the corresponding translated protein was consistently expressed following radiation exposure. Moreover, expression of T