The study, which covers the period between 2014 and 2018, was carried out in the city of Naberezhnye Chelny, Republic of Tatarstan, Russia. The aim of the study was to examine the biochemical response of maple trees growing in the anthropogenic environments. Leaf samples from 600 trees (Acer platanoides L. and Acer negundo L.) were collected at monthly intervals from June through August. Sampling was performed early in the morning (11 a.m.) in the middle of the month. The study offers statistical data on the tannin content, determined via permanganometry; the ascorbic acid concentration, found via titration with 2.6-dichlorophenolindophenol; the ascorbate oxidase activity determined by absorbance at 265 nm; and the polyphenol oxidase activity, found by the spectrophotometric method. Relatively higher ascorbate oxidase activity was detected in August among ash-leaved Acer platanoides L. and Acer negundo L. in areas with strong anthropogenic impact. Due to increased air pollution, maple trees were found to exhibit an increase of polyphenol oxidase activities. The condensed tannin content in Norway maple trees dropped over time by 1.24 in July (avenue); by 0.94 (buffer area) and 0.76 (avenue) in August. The condensed tannin content in the ash-leaved maple trees also decreased by 0.69 (buffer area) and 0.22 (avenue) in July; by 0.37 (buffer area) and 0.61(avenue) in August.The present study focused on the evaluation of phytochemical properties, essential mineral elements, and heavy metals contained in raw propolis produced by stingless bees Geniotrigona thoracica, Heterotrigona itama, and Tetrigona binghami found in the same ecological conditions and environment in Brunei Darussalam. The results indicated that propolis of the three stingless bee species mainly consisted of lipids (45.60-47.86%) and very low carbohydrate (0.17-0.48%) and protein contents (0.18-1.18%). The propolis was rich in mineral elements, thus good sources of minerals, while they contained low concentrations of all heavy metals. Propolis of the different bee species could be distinguished based on their mineral compositions. The vibrational and absorption spectra suggested that propolis contains π-conjugated aliphatic and aromatic compounds as well as aromatic acids having amine, ester, carbonyl, alkyl, and hydroxyl functional groups which might be attributed to the presence of phenolic and flavonoid compounds. The antioxidant capacity of the propolis, based on radical scavenging activity of their ethanol extract, was in line with their total phenolic content. The ethanol extract of the propolis also showed antimicrobial activities against four bacterial strains (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). The propolis showed slightly higher antibacterial activity against Gram-positive (B. subtilis and S. aureus) bacteria, indicating that the antimicrobial active compounds could be associated with flavonoids, which were quantified to be approximately comparable in all the propolis.The aim of the research was to evaluate the effect of foliar application of different doses of Tytanit as a biostimulant on the yield and nutritional value of Medicago × varia T. https://www.selleckchem.com/products/sp2509.html Martin and Trifolium pratense L. It was assumed that titanium application during any life cycle of alfalfa hybrid and red clover would contribute to their growth, digestibility, and total protein content. In addition, it was expected that increasing doses of Tytanit up to 0.6 dm3 ha-1 would improve the yield and quality of forage plants. Different doses of Tytanit in different ways affected the yield. However, the largest dose of 0.6 dm3 turned out to be the most effective. It contributed to a 38% increase in the yield of hybrid alfalfa and to a 31% increase in the red clover yield. Individual doses of Tytanit in different ways affected accumulation of protein and crude fibre in the dry matter. Used at 0.4 and 0.6 dm3 doses it increased the amounts of protein and crude fibre relative to control. The smallest dose had no significant effect on these parameters. Tytanit did not improve dry matter digestibility, and there was no statistically significant variation as a result of its application. Foliar application of the biostimulant resulted in an increase in the concentration of phosphorus, potassium, and magnesium in plant dry matter. High content of calcium in the plant species before Tytanit application increased further as a response to 0.2 and 0.4 dm3 doses, with a slight increase in the ratio of K (Ca + Mg) and an excessive growth of the Ca P ratio, which reduced hybrid alfalfa and red clover nutritional values. Thus, Tytanit doses used in the experiment significantly increased hybrid alfalfa and red clover yields, but the nutritional value of the plants did not improve.The objective of this study was to characterize an endophytic fungi producing-bioactive compound from the aquatic plant, Nelumbo nucifera. All parts of such plant were cleaned with surface sterilization technique and cultured on potato dextrose agar to isolate endophytic fungi. The identification was characterized by morphological and molecular technique. Fungal isolates were screened to discover antimicrobial activities by disc diffusion method against Methicillin-resistant Staphylococcus aureus DMST20651 (MRSA). MIC and MBC for those crude fungal extracts were determined. Finally, the chemical profile of crude extract was determined by gas chromatography and mass spectrometry. Six endophytic fungi were isolated from the surface-satirized parts of N. nucifera. Based on disc diffusion assay, the highest antibacterial activity against MRSA was isolate ST9.1 identified as Aspergillus cejpii. Results demonstrated that the ethyl acetate extraction had more active fractions with MIC of 2.5 mg/ml and MBC concentration of 50.0 mg/ml. The crude extracts were developed to identify the chemical constituents by gas chromatography and mass spectrometry. The major component of crude extract of endophytic fungi was 5-(1H-Indol-3-yl)-4,5-dihydro-[1,2,4]triazin-3-ylamine (C11H11N5). Thus, the plant could be used in the treatment of infectious diseases caused by bacterial pathogen.