(1) Background Despite high prevalence of physical inactivity and sedentariness among nursing home residents, research on the influence of environments on this topic remains scarce. This Photovoice study explores how structural and social environments relate to residents' everyday physical activity (PA). (2) Methods 27 residents, staff, and significant others conducted Photovoice in eight nursing homes in Germany to document factors facilitating or hindering PA. Photographs were discussed with the participants in eight focus groups and analysed using thematic analysis. (3) Results 169 photographs (between 8 and 42per home) were categorized into three thematic groups (1) 'architectural challenges for PA promotion in nursing homes'; (2) 'opportunities and limitations of using daily work equipment for PA promotion'; (3) 'social incentives for PA promotion'. Photographs' foci in the homes differed considerably between participant groups. Staff primarily chose environmental constructions and aids that they perceived to enable residents' PA. Residents were more likely to express affections and emotions that would encourage them to be active. (4) Conclusions PA promotion research in this setting should be sensitive to diverse perceptions of different stakeholder groups and existing power imbalances. Interventions are needed that integrate residents' needs and train staff on how to consider residents' perspectives.Combining the merits of non-contact measurement and high sensitivity, the quartz-enhanced photothermal spectroscopy (QEPTS) technique is suitable for measuring acid gases such as hydrogen chloride (HCl). https://www.selleckchem.com/products/ly2157299.html In this invited paper, we report, for the first time, on an ultra-highly sensitive HCl sensor based on the QEPTS technique. A continuous wave, distributed feedback (CW-DFB) fiber-coupled diode laser with emission wavelength of 1.74 µm was used as the excitation source. A certified mixture of 500 ppm HClN2 was adapted as the analyte. Wavelength modulation spectroscopy was used to simplify the data processing. The wavelength modulation depth was optimized. The relationships between the second harmonic (2f) amplitude of HCl-QEPTS signal and the laser power as well as HCl concentration were investigated. An Allan variance analysis was performed to prove that this sensor had good stability and high sensitivity. The proposed HCl-QEPTS sensor can achieve a minimum detection limit (MDL) of ~17 parts per billion (ppb) with an integration time of 130 s. Further improvement of such an HCl-QEPTS sensor performance was proposed.A miniaturized reliability test system for microdevices with controlled environmental parameters is presented. The system is capable of measuring key electrical parameters of the microdevices while controlling the environmental conditions around the microdevices. The test system is compact and thus can be integrated with standard test equipment for microdevices. By using a feed-forward decoupling algorithm, the presented test system is capable of generating a temperature range of 0-120 °C and a humidity range of 20-90% RH (0-55 °C), within a small footprint and weight. The accuracy for temperature and humidity control is ±0.1 °C and ±1% RH (30 °C), respectively. The functionality of the proposed test system is verified by integrating it with a piezo shaker to test the environmental reliability of an electromagnetic vibration energy harvester. The proposed system can be used as a proof-of-technology platform for characterizing the performance of microdevices with controlled environmental parameters.This study aimed to investigate the cytotoxicity and bioactivity of a novel nanocomposite containing nanoparticles of bioactive glass (nBGs) on human dental pulp stem cells (hDPSCs). nBGs were synthesized by the sol-gel method. Biodentine (BD) nanocomposites (nBG/BD) were prepared with 2 and 5% wt of nBG content; unmodified BD and glass ionomer cement were used as references. Cell viability and attachment were evaluated after 3, 7 and 14 days. Odontogenic differentiation was assessed with alkaline phosphatase (ALP) activity after 7 and 14 days of exposure. Cells successfully adhered and proliferated on nBG/BD nanocomposites, cell viability of nanocomposites was comparable with unmodified BD and higher than GIC. nBG/BD nanocomposites were, particularly, more active to promote odontogenic differentiation, expressed as higher ALP activity of hDPSCs after 7 days of exposure, than neat BD or GIC. This novel nanocomposite biomaterial, nBG/BD, allowed hDPSC attachment and proliferation and increased the expression of ALP, upregulated in mineral-producing cells. These findings open opportunities to use nBG/BD in vital pulp therapies.There are many controversies regarding the relationship between lead exposure andcomplications in pregnancy. Preeclampsia (PE) is a maternal hypertensive disorder which is one of the main causes of maternal and foetal mortality. The aim of our study was to assess blood lead level (BLL) in Polish women with PE (PE group, n = 66) compared with healthy, non-pregnant women (CNP group, n = 40) and healthy pregnant women (CP group, n = 40). BLL was determined by inductively coupled plasma mass spectrometry (ICP-MS). The systolic blood pressure (SBP), diastolic blood pressure (DBP) and BLL in the CP group were significantly lower than in the PE group (p less then 0.001). Logistic regression analyses of BLL showed a significant positive relationship with the presence of PE. Furthermore, both the SBP and DBP values were positively associated with BLL. This study indicates that preeclamptic women tend to present with significantly higher BLL compared to healthy pregnant women. There were no differences in the BLL between the CP and CNP groups.Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of "known" drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.