https://www.selleckchem.com/products/arry-380-ont-380.html The underlying molecular mechanisms of chronic pancreatitis (CP) developing into pancreatic ductal adenocarcinoma (PDAC) remain largely unknown. Here we show that the level of serotonin in mouse pancreatic tissues is upregulated in caerulein-induced CP mice. In vitro study demonstrates that serotonin promotes the formation of acinar-to-ductal metaplasia (ADM) and the activation of pancreatic stellate cells (PSCs), which results from the activation of RhoA/ROCK signaling cascade. Activation of this signaling cascade increases NF-κB nuclear translocation and α-SMA expression, which further enhance the inflammatory responses and fibrosis in pancreatic tissues. Intriguingly, quercetin inhibits and PSCs activation in vitro and in vivo via its inhibitory effect on serotonin release. Our findings underscore the instrumental role of serotonin-mediated activation of RhoA/ROCK signaling pathway in development of PDAC from CP and highlight a potential to impede PDAC development by disrupting tumor-promoting functions of serotonin. Retinal ischemia reperfusion injury (IRI) is a leading cause of visual impairment or blindness, and an effective way to prevent the visual loss needs to be developed. Although decades of clinical application of Huoxue-Tongluo-Lishui-Decoction (HTLD) has demonstrated its reliable clinical efficacy against retinal IRI, no convincing randomized controlled trials were conducted in humans or animals, and the associated mechanism still needs to be explored. To confirm the protective effect of HTLD against retinal IRI and to explore its underlying mechanisms, a standard retinal IRI animal model, randomized controlled trials, objective evaluation and examination methods were adopted in this study. Flash visual evoked potentials (F-VEP) was performed 8 weeks post-reperfusion. The results showed that the medium dose of HTLD had better treatment effects than low dose of HTLD. High dose of HTLD did not f