The concentration of Cu was maximum in Zea mays grown at site 5 and minimum in Trifolium alexandrinum at site 4. https://www.selleckchem.com/products/nx-1607.html The cow blood samples showed the mean concentration of Cu ranged from 1.368 to 0.53 mg/kg at all sites. It was maximum at site 2 and minimum at site 6. Owing to the results of pollution index and transfer factors, metal content was found to be in permissible range in forages as well as animal samples.To make full use of unlabeled data for soft-sensor modelling and to address the coexistence of a large number of hard-to-measure variable issues, this study proposed a novel two-step adaptive heterogeneous co-training multioutput model. First, unlabeled data with the highest confidence were selected to optimize the model. Then, the proposed model co-trained Gaussian process regression (GPR) and least squares support vector machine (LSSVM) algorithms with two sets of independent labeled data. Second, at each step of the model update, the Kalman filter (KF) worked together with a moving window (MW) to strengthen the model to address process dynamics. Finally, the proposed model was demonstrated by a simulated wastewater treatment platform, BSM1, and a real sewage treatment plant. The root-mean-square error (RMSE) and root-mean sum of squares of the diagonal (RMSSD) were obviously reduced, and the correlation coefficient (R) and correlation coefficient (RR) reached 0.8 in both case studies. The results suggest that the proposed model can significantly improve prediction performance.Ex situ aqueous mineral carbonation of ultramafic mining waste is an evolving technology for the CO2 sequestration from small- to medium-scale emitters. The mineral ores or mine wastes of associated ultramafic mineralogy are a suitable feedstock for mineral carbonation. The aqueous mineral carbonation at ambient temperature is motivating and attractive from an energy-saving perspective. This study has investigated the CO2 sequestration potential of a locally available ultramafic material generated from a nickel ore mine with a futuristic scope of integrating the method into an ongoing mineral extraction and/or tailing management operation. The mineral characterization and experimental results indicate that the tested material has CO2 sequestration potential and underwent carbonation at ambient temperature. The carbonate conversion efficiencies obtained for Ca and Mg from the dissolved ionic forms at optimum conditions are 60% and 25%, respectively. The material was able to sequestrate about 0.12 gCO2 per g solid at this efficiency. Aragonite and hydromagnesite are the major products that evolved out from the aqueous carbonation. Based on the mineral carbonation results, the novel concept of integrating the evolved method to existing mineral extraction and/or tailings management operation is discussed.We assessed groundwater pollution index (GPI) and groundwater quality of coastal aquifers from Tiruchendur in South India for drinking and irrigation by evaluating the physico-chemical parameters of 35 samples of mainly Na-Cl type in an area of 470 km2 with respect to the World Health Organization (WHO) standard as well as by estimating different indices such as total hardness (TH), sodium percentage (Na%), magnesium ratio (MR), Kelley's ratio index (KR), potential salinity (PS), Langelier saturation index (LSI), residual sodium carbonate (RSC), sodium adsorption rate (SAR), permeability index (PI), and the irrigation water quality index (IWQI). Minimal influence of aquifer lithology and the dominant influence of evaporation on groundwater chemistry reflected the semi-arid climate of the study area. Electrical conductivity (EC) of about 89% of the samples across 418 km2 exceeded the permissible limit and Ca values of 74% of samples, however, remained within the allowable limit for drinking. More chloride was caused by influx of seawater and salt leaching and higher K was due to excessive fertilizer usage for agriculture. The spatial distribution map created using inverse distance weighting (IDW) method shows that the suitable groundwater is present close to the river basin. GPI values between 0.40 and 4.7, with an average of 1.5, classify insignificant pollution in 43% of the study region and the groundwater suitable for drinking purposes. In addition, 17% of the groundwater samples are also marginally suitable for drinking. The irrigation water quality indices provided contradictory assessments. Indices of TH, Na%, MR, PS, and LSI suggested 32-95% of the samples as unsuitable for irrigation, whereas the indices of RSC, SAR, and PI grouped 72-100% samples as permissible for irrigation. The IWQI map, however, indicated that the groundwater from more than half of the study area are not apt for irrigation and the groundwater of about one-third of the area could only be applied to salt-resistant plants.Endosulfan is an organochlorine pesticide, which is commonly used throughout the world. It accumulates in the environment and may cause significant damage to the ecosystems, particularly to the aquatic environments. The present study was conducted to evaluate the genotoxic effect of endosulfan on the grass carp (Ctenopharyngodon idella) blood. The fish were exposed to three different concentrations, 0.75 ppb/day, 1.0 ppb/day, and 1.5ppb/day of endosulfan for 7, 14, 21, and 28 days. The study was a randomized control trial and the control group was not exposed to endosulfan. The results showed that after 7 days, the level of DNA damage in all the concentrations was significant (P less then 0.05), while after 14, 21, and 28 days' trials, highly significant (P less then 0.000) level of DNA damage was observed. Hence, time- and dose-dependent DNA damage was observed in fish DNA by comet assay. It is concluded from our results that with the increase in endosulfan concentration and exposure duration, the level of DNA damage also increased. As the current study showed the severe genotoxic effect of endosulfan in Ctenopharyngodon idella, therefore, the imprudent and indiscriminate use of endosulfan should be controlled and monitored by the concerned government authorities.