https://www.selleckchem.com/products/rhapontigenin.html Results indicating that a high milk intake is associated with both higher and lower risks of fragility fractures, or that indicate no association, can all be presented in the same meta-analysis, depending on how it is performed. In this narrative review, we discuss the available studies examining milk intake in relation to fragility fractures, highlight potential problems with meta-analyses of such studies, and discuss potential mechanisms and biases underlying the different results. We conclude that studies examining milk and dairy intakes in relation to fragility fracture risk need to study the different milk products separately. Meta-analyses should consider the doses in the individual studies. Additional studies in populations with a large range of intake of fermented milk are warranted.Patients with refractory diabetes are defined as type 2 diabetes (T2D) patients; they cannot achieve optimal glycemic control and exhibit persistent elevations of hemoglobin A1c (HbA1c) ≥8% while on appropriate therapy. Hyperglycemia can lead to severe microvascular/macrovascular complications. However, in contrast to T2D, few studies have focused specifically on the gut microbiota in refractory diabetes. To examine this issue, we recruited 79 subjects with T2D and refractory diabetes (RT2D), and all subjects received standard therapy with Metformin or other hypoglycemic agents with or without insulin for at least one year. The α-diversity displayed no significant difference, whereas the β-diversity showed a marginal significance (p = 0.054) between T2D and RT2D. The evaluation of taxonomic indices revealed reductions in both Akkermansia muciniphila and Fusobacterium and a corresponding enrichment of Bacteroides vulgatus, Veillonella denticariosi among those with RT2D. These microbial markers distinguished RT2D from T2D with an acceptable degree of discrimination (area under the curve (AUC) = 0.719, p less then 0.01) and wer