https://www.selleckchem.com/products/ugt8-in-1.html Spheroid formation is a well-known feature of stem/progenitor cells. Dental pulp cells (DPCs) cultured in serum-free medium can also form spheroids. However, the success rate varies largely depending on various factors. This study aimed to explore these factors and optimize the conditions. Primary DPCs were obtained from 6 wisdom teeth. Possible influencing factors including donor teeth, concentrations of the KnockOut Serum Replacement (KSR), seeding density (regarding surface and volume), passage and freezing were tested. DPCs from all 6 donor teeth formed spheroids in serum-free medium. Number, size, and total area of spheroids varied among different donor teeth. Optimal concentration of the KSR and seeding densities also varied from tooth to tooth. Generally, high KSR and high cell density lead to better spheroid formation. However, very high KSR and cell density can also lead to cell death and the fusion of spheroids to irregular aggregates. An initial setting can be recommended as Serum-free MEM plus 10-15% KSR and seeding densities of 1-2×10 cells/ml and 2×10 cells/cm These parameters provide a direction for optimizing the condition for obtaining spheroids from human DPCs. An initial setting can be recommended as Serum-free MEM plus 10-15% KSR and seeding densities of 1-2×105 cells/ml and 2×105 cells/cm2 These parameters provide a direction for optimizing the condition for obtaining spheroids from human DPCs. During surgical resection of gastroesophageal-junction (GEJ) adenocarcinoma, the margin status is often difficult to visualize resulting in high recurrence rates. The aim of the present study was to develop a labelling technique that would allow improved visualization of GEJ tumor margins for surgeons to reduce recurrence rates in a patient-like model. A patient GEJ tumor was obtained from an endoscopic biopsy and implanted subcutaneously in a nude mouse. A patient-derived orthotopic xenograft (PDOX) mod